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Abstract. In this work we address the problem of manufacturing muchine parts from sensed data,
Constructing geometric models for objects from sensed data is the intermedinte step in o reverse
engineenng munufacturing system, Sensars are usually insccurate, providing uncertain sensed infor-
mation. We construct geometric entities with uncertainty models from noisy measurements for the
ubjects under consideration, and proceed 1o do reasoning on the uncertun geometries, thus, adding
rabustness to the construction of geometries from sensed data.

Key words: munufuciuring, wlerance, sensing, uncertainty modelling.

1. Introduction

Reverse engineering is a process that reconstructs a representation of a physical
maodel, so that it can be reproduced identically. It is one of the new branches within
the CAD/CAM field. Parts are manufactured according to blue prints, but when
blue prints are not available. (for example, when the part is oo old, and its blue
prints are missing), reverse engineering can be used to reproduce these parts. This
can be achieved by the following two major steps: sensing the part (o construct its
CAD representation and then manufacturing the part according to the representa-
tion. It is easy to sce that the accuracy of the measurements is the key to succeed
in eproducing an accurate CAD model.

The accuracy of the measurements can be improved not only by improving
the quality of measuring instrument, but also by optimizing sampling data. A re-
verse engineering system has been built and the measuring process is done by a
vision sensor (B/W CCD camera) and a coordinate measuring machine (CMM).
The physical model is inspected by the cooperation between the observer camera
and the probing CMM. The observer camera provides a high level (qualitative)
description of the physical model, and the CMM complements the CAD model

* All opinions, findings, conclusions or recommendations expressed in this document are those
of the authors and do not necessarily reflect the views of the sponsoring agencies.
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Figure 1. Overview of the system,
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Figure 2. Sensing.

Figure 3. CAD model of the physical part.

with precise parametric data. Figures | and 2 provide an overview of the whol

system. Figure 3 shows the CAD model of the physical paris. Figure 4 shows the

vision setup.
In order to increase the accuracy and efficiency of the measurements, a feed
back sensing system is designed as shown in Figure 5. In this feedback system. i
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Figure 4. Experumental setup.
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Figure 5. Feedbuck sensing system.

Figure 6. Slon.

probabilistic geometric modeler is utilized as a feedback agent to provide further
measurements required to refine the CAD maodel, which also gives a quantitative
measure of the accuracy of the current CAD model. The CMM machine actively
measures the parameters for local features. By using the probabilistic geomet-
ric modeler performing modeling operations, redundant information of the part's
geometry will be computed to reduce the load of the CMM measurement aclivities.
Therefore, it improves the efficiency of the sensing process, besides, the geomet-
ric reasoning on the probabilities of uncertain geometries can guide the CMM to
perform focused measurements o allow for higher accuracy and efficiency. For
instance, the slot (see Figure 6) in mechanical engincering is a commonly used
feature, and the parallelism of the two side planes is an important measurement,
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The two side planes are based on sampling points from the CMM and/or vi-
sual data. Measurements of these points are not exact, therefore, these two planes
constructed from measurements, are planes with the confidence measure as prob-
abilities. Consequently, the parallelism is no longer a defined relation, 1t has a
probability distribution. If the confidence of the parallelism does not satisfy the
manufucturing requirements, refincment of the two side planes is required, hence,
re-measuring of the points is performed.

Some work has been done in the probabilistic relationship between geomelric
objects and their relations, but the probability relations between the sampling points
and geometric primitives have not yet been studied extensively. The geometric
objects that this probabilistic geometric modeler is based on are constructed rom
sensed data. Therefore, the study of the relation of the probabilistic characteristics
of geometric objects and the sensed data is very important. This paper presents
the study of these relutions. This work addresses the statistic geometric objects
constructed from sensed data, relations of these statistic geometries, and the effect
of decisions on the relutive geometric objects.

2. Related Work

Stochastic geometry has been systematically studied by mathematicians. In [12],
mathematical theories of stochastic geomeltry are well studied, and uncertain geo-
metric features can be represented as constrained functions. Classic examples of
stochastc geometry can be found in [11]. Kendall and Moran[12], describe a met-
hod of choosing distributions on geometric elements which provide a consistent
interpretation of physical geometric elements.

Recently, research on sensing and uncertain geometry in robotics presents lots
of ideas for handling uncertain geometry. Durrant-Whyte in [4, 5] has modeled the
sensor in a manner that explicitly accounts for the inherent uncertainty encountered
in robot operations. In Davidson's thesis [13], he made the imporant observation
that arbitrary random geometric objects can be described by a point process in
parameler space.

In computer-aided geometric modeling, methodologies for building a robust
geometric modeler explores ways of handling the uncertain geometry caused by
imprecise computations. Arbitrary decisions are made, when uncertainty arises.
In(l.2 3 6.7 8,9, 10, 14], three region tolerances are used to keep track of
uncertainty caused by the computational error. In [15]; arbitrary decisions are made
and corresponding uncertaintics are restricted.

3. Representations for Uncertain Geometry

In geometric modeling, algorithms and representations for geometric objects are
well developed, but the tolerance (uncertainty of geometry) has not yet been well
defined. In [14], a geometric object is represented by boundary and hybrid repre-
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Figure 7, Representation of a plane.

sentations, associated with a tolerance representing the uncertainty of 1he geometry.
We have developed a representation for uncertain geometry as follows,

An uncertain geometric object is represented in two parts: a geometric de-
scription, and a probabilistic distribution of geometry. The geometric description
15 @ parameter vector, and the probabilistic distribution of geometry is a vector
of the same dimension as the geometric description, but with the corresponding
probabilistic distributions of the parameters.

For instance, a plane can he specified as an equation: (A, B. C), (f,, fi. fi).
where (A, B, C) is the geometric description and 2 = Ax + By + C. (£, [, [2)
is the probabilistic distribution of geomelry, and also can be specified in another
form: (P, V), (f,. fu), as shown in Figure 7, where P is a base point, and V is
the normal vector of the plane. f, is the uncertainty of the base point, and f, is the
uncertainty of the normal vector. It can be proved that f, and f, can be computed
from fu. fp. fo.and P, V can be computed from (A, B, C). By defining f,, fi, /..
different types of probability distributions can he handled by this representation.

4. Experiments on Statistical Geometric Objects

The geomeiric objects that the modeler operates on, are constructed from the sen-
sed data. The manner in which the distribution of sensed data affects the uncertainty
of the geometry is the basis for defining the distributions of the geometry. In this
section, the uncertainty of the plane related 1o the sensed 3D coordinates is studied.
A set of discrete sensed data is used to perform the computations.
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4.1. BEST LEAST SQUARE FIT

In order to reduce the random error, usually, n sampling points are measured for
defining a plane. Although the points have certain probability distributions which
mainly depend on the measuring machine (e.g.. CMM). they are independent ran-
dom events. Therefore, a best least square fit method for computing the plane para-
meter is used. This approach yields the maximum likelihood result and confidence
on the sampling data o be a plane.

The input data is (x,, ¥, 2, ), where x;, v/, 7; can have pre-chosen values or prob-
ability functions. They can be either independent. or correlated. Explicit function
definition for a plane in 3D will be z = Ax + By + C. If there are n points, the
best least fit plane should be the solution of the following equation set:

Z =P X,
where
Ty Xy Y1 I
2 ooy | A
Z= (=1 X=| B
(&
:n 'rl'l .“H 1

Because P is an n % 3 matrix, and X is a 3 x 1 matix, rank(P) =3, and n = 3,
solution of X is unique, When n > 3, the solution X is a best least square fil
X =(PY.P) ' P-Z, orin the other form:

A = [z, ye)
B = g(x,y.2),
C = h{x.y,2),

where ¥ & [x;, xal. ¥ € Iy1, y2l, 2 € [21, 22] are discrete. Exhaustively computing
values of f, g, and h, will provide the discrete probability distribution arrays for
A, B, and C.

From the ahove computations, we can see (hat the computation complexity
is exponential. If m is the number of distribution values and n is the number of
sampling points, this above computation will be performed (3)" times.

4.2, SENSED DATA AND THE CORRESPONDING RESULTS

The sensed data is modeled by discrete points with their corresponding probabili-
lies, Normally, a point in 3D is represented as (x. v, z). but for this sensing data, x,
y, and z, are no longer a single value, they are distributions as shown in Figure 8.

Due to the computational complexity and the generality of the problem, three
distribution values are randomly chosen for experiments. The resulting planes (A,
B. C) along with their distributions are computed, Graphs of A, B, and € distrib-
utions are approximated by the following computations.
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Capturing the essence of the f(x) shape is very important, The computed data
corresponds to the discrete state vector (A, B, C) and its probability. Plx, < x
< Xy ) = f "1 f(x)dx is computed and plotted, where x can be A, B. or € and
Vs = & S Xmaxe In Order 10 smooth the curve, an overlapped set of x; is used. In
the result figures, the x-axis are the values of A, B, C respectively, and the y-axis
are the corresponding probability of that value.

s Test 1. Uniform distribution: the sensing data is shown in Figure 9. There are a
total of three points with such distributions, the planes defined by these points
are computed. The distributions of A. 8, C ure shown in the following figures.

e Test 2. Gaussian distribution: the sensing data is shown in Figure 10. There are
a total of three points with such distributions, the planes defined by these points
are computed. The distributions of A, B, C are shown in ligures | 1-13. From the
uniform and Gaussian distribution test data. it can be seen that the distribution of
the (a, b, ¢) space is Gaussian despite the probability distributions of the sensing
dlita,

5. Relations of Statistic Geomeltries and its Effect on Relative Geometries

As mentioned in the introduction, the goal of this probabilistic modeler is 1o feed-
back control the sensing devices to measure the physical model and give a quantita-
tive confidence measurement for the CAD model. Some relations of these uncertain
geometries are computed with their uncertainty distributions.

Basicully, geometric relations are set relations, such as: intersection. coinci-
dence, incidence, and parallelism. Because of the uncertainty of the geometries,
these relations are not defined, they are decisions with certain confidence that can
be specified by its probability. For instance, a point incident to & plane. can be
computed with 0.9 probability. This allows for reasoning based on probabilities.

A feedback computation of a plane that is supposed to be colinear with a given
plane is swdied. A program that takes the output discrete planes along with their
probabilities is implemented, and the cases of parallel and colinear statements are
computed with their probabilities. Some examples lested: the probability for par-
allelism is 0.824719, for colinearity it is 0.334722. The parallelism and colinearity
of the planes of the three points Gaussian distribution and the uniform distributions
have also been tested. The parallelism probability is 0.667308406, and the colinear-

Table 1

A B C P probability )
1034723 —0.961805  2,386458 0.33
| 036SK4 —0.966461  2.391768 0.34

LORMM2 (L9701 2395926 0.33
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Figure 4. Redistribution of uniform sensing daty,

ity probability is 0.27099 140. (The tolerance for testing them is the square distance
being less than 10¢™2 mm.)

If the decision is made so that the plane constructed from the uniform distri-
bution sensed data is colinear with the plane defined by Table I, then, its distrib-
ution is recomputed as follows: among this plane set, the plane instances that are
not colinear with any of the plane instances in the given plane set are discarded.
Aflter discarding these plane instances, the distribution of the new plane set is re-
normalized. The resulting distributions of A, B, C are shown in Figure 14. We can
see that after recomputing the plane. the distributions of A, B and C are located in a
more narrow range, further more, based on this redistributed plane set, the sampling
points can also be recomputed and some can be discarded, or a re-measured,

6. Conclusions

Based on real sensing data, the probability of the geomeiry of objects under con-
sideration is computed. This provides the capability of defining the probability
distribution of the geometry based on robust compultations as apposed 1o noisy
measuring instruments. The relations between uncertain geometries are dependent
on the uncertainty of geometries. Quantitative measurement for the constructed
CAD model can thus be computed, and the relations can also involve the redistri-
bution of the uncertainty of the geomeltry, This can be used as a feedback o guide
the sensing and manufacturing modules.
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