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Abstract 

We address the problem of observing a moving agent. In particular, we propose a system for observ- 
ing a manipulation process, where a robot hand maliipulates an object. A discrete event dynamic 
system (DEDS) frame work is developed for the handlobject interaction over time and a stabilizing 
observer is constructed. Low-level modules are developed for recognizing the "events" that causes 
state transitions within the dynamic manipulation system. The work examines closely the pos- 
sibilities for errors, mistakes and uncertainties in the manipulation system, observer construction 
process and event identification mechanisms. The system utilizes different tracking techniques in 
order t o  observe and recognize the task in an active, adaptive and goal-directed manner. 

1 Introduction 

The problem of observing a moving agent was addressed in the literature extensively. It was discussed in the 
work addressing tracking of targets and, determination of the optic flow [2,7,10,17], recovering 3-D parameters 
of different kinds of surfaces [6,12,15,16], and also in the context of other problems [1,3,8,9]. However, the 
need to recognize, u~lderstand and report on different visual steps within a dynamic task was not sufficiently 
addressed. In particular, there is a need for high-level symbolic interpretations of the actions of an agent that 
attaches meaning to the 3-D world events, as opposed to simple recovery of 3-D parameters and the consequent 
tracking movements t o  compensate their variation over time. 

In this work we establish a framework for the general problem of observation, recognition and understanding 
of dynamic visual systems, which may be applied to  different kinds of visual tasks. We concentrate on the 
problem of observing a manipulation process in order to illustrate the ideas and motive behind our framework. 
We use a discrete event dynamic system as a high-level structuring technique to  model the visual manipulation 
system. Our formulation uses the knowledge about the system and the different actions in order to solve the 
observer problem in an efficient, stable and practical way. The model incorporates different hand/object 
relationships and the possible errors in the manipulation actions. It also uses different tracking lliechanisms 
so that the observer can keep track of the workspace of the manipulating robot. A frame work is developed 
for the hand/object interaction over time and a stabilizing observer is constructed. Low-level inodules are 
developed for recognizing the "events" that causes state transitions within the dynamic manipulation system. 
The process uses a coarse quantization of the manipulation actions in order to  attain an active, adaptive and 
goal-directed sensing mechanism. 

The work examines closely the possibilities for errors, mistakes and uncertainties in the visual manipulation 
system, observer construction process and event identification mechanisms, leading to a DEDS formulation 
with uncertainties, in which state transitions and event identification is asserted according t o  a coillputed set 
of 3-D uncertainty models. 

*This report is a compressed version of technical report MS-CIS-91-36 and GRASP Lab. TR 261. It was presented in the 1 2 ~ ~  
International Joint Conference on Artificial Intelligence (IJCAI), Workshop on Dynamic Scene Understanding. Sydney, Aust,ralia, 
August 1991 and publjshed in the proceedings of the European Robotics and Intelligent Systems Conference (EUR1SC;ON '91), 
Corfu, Greece, June 1991. 



We describe the automaton model of a discrete event dynamic system in the next section and then proceed 
to fornlulate our framework for the manipulation process and the observer construction. Then we develop 
efficient low-level event-identification mechanisms for determining different manipulation movements in the 
system and for moving the observer. Next, the uncertainty levels are described in details. Some results from 
testing the system is enclosed and future extensions to the system are discussed. 

2 Discrete Event Dynamic Systems 
Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in which state transi- 
tions are triggered by the occurrence of discrete events in the system. DEDS are usually modeled by finite state 
automata with partially observable events together with a mechanism for enabling and disabling a subset of 
state transitions [11,13,14]. We propose that this model is a suitable framework for many vision and robotics 
tasks, in particular, we use the model as a high-level structuring technique for our system to  observe a robot 
hand manipulating an object. We can represent a DEDS by the following quadruple : 

G = (X, C, U, I?) 
where S is the finite set of states, C is the finite set of possible events, U is the set of admissible control inputs 
consisting of a specified collection of subsets of C ,  corresponding to the choices of sets of controllable events 
that can be enabled and r C is the set of observable events. 

We can visualize the concept of DEDS by an example as in Figure 1, the graphical representation is quite 
similar to a classical finite automaton. Here, circles denote states, and events are represented by arcs. The 
first symbol in each arc label denotes the event, while the symbol following "/" denotes the corresponding 
output (if the event is observable). Finally, we mark the controllable events by ":u". 

Figure 1 : A Simple DEDS Example 

Thus, in this example, S = {0,1,2,3) ,  C = {cr,P,6), r = {a, 63, and 5 is controllable at  state 3 but not at 
state 1. 

Stability can be defined with respect to the s t a t e s  of a DEDS automaton. Assuming that we have identified 
the set of "good" states, E, that we would like our DEDS to "stay within" or do not stay outside for an infinite 
time, then stabilizability can be formally defined as follows : 

Given a live system -4 and some E C X ,  x E X is stabilizable with respect to E ( or E-stabilizable ) if there 
exists a state feedback Ii such that x is alive and E-stable in A K .  A set of states, Q,  is a stabilizable set if 
there exists a feedback law K(s)  (a control pattern) so that every x E Q is alive and stable in A K ,  and .-I is a 
stabilizable system if .Y is a stabilizable set. 

A DEDS is termed obse rvab l e  if we can use the observation sequence to determine the current state exactly at 
intermittent points in time separated by a bounded  number of events. More formally, taking any suficie~ltly 



long string, s, that can be generated from any initial state 2. For any observable system, we can then find a 
prefix p of s such that p takes x to a unique state y and the length of the remaining s u f i  is bounded by some 
integer no.  Also, for any other string t ,  from some initial state x', such that t has the same output string as 
p, we require that t takes X I  to the same, unique state y. 

The basic idea behind strong output stabilizability is that we will know that the system is in state E iff the 
observer state is a subset of E. The compensator should then force the observer to  a state corresponding to 
a subset of E at  intervals of at most a finite integer i observable transitions. If Z is the set of states of the 
observer, then : 

A is strongly output E-stabilizable if there exists a state feedback K for the observer 0 such that OK is stable 
with respect to Eo = { x E Z I x C E }. 

3 Modeling and Observer Construction 
Manipulation actions can be modeled efficiently within a discrete event dynamic system framework.We use 
the DEDS model as a high level structuring technique to preserve and make use of the information we know 
about the way in which each manipulation task should be performed. 

3.1 Building the Model 
We present a simple model for a grasping task. The model is that of a gripper approaching an object and 
grasping it. As shown in Figure 2,  the model represents a view of the hand at state 1, with no object in sight, 
at state 2, the object starts to appear, at state 3, the object is in the claws of the gripper and at state 4, 
the claws of the gripper close on the object. Different orientations for the approaching hand are allowable 
and observable. State changes occur only when the object appear in sight or when the hand encloses it. It 
should be noted that these states can be considered as the set of "good" states El since these states are the 
expected different visual configurations of a hand and object within a grasping task. States 5 and 6 represent 
instability in the system as they describe the situation where the hand is not centered with respect to the 
camera imaging plane. The events are defined as motion vectors or motion vector probability distributions, 
as will be described later, that causes state transitions and as the appearance of the object into the viewed 
scene. The controllable events are denoted by ": t'. 

Figure 2 : A Model for a Grasping Task 



3.2 Developing the Observer 
In order to know the current state of the manipulation process we need to  observe the sequence of events 
occurring in the system and make decisions regarding the state of the automaton, state ambiguities are 
allowed to occur, however, they are required to  be resolvable after a bounded interval of events. The goal 
will be to make the system a strongly output stabilizable one and/or construct an observer to satisfy specific 
task-oriented visual requirements. As an example, for the model of the grasping task, an observer can be 
formed for the system as shown in Figure 3. It can be easily seen that the system can be made stable with 
respect to the set Eo. 

Figure 3 : Observer for the Grasping System 

3.3 Identifying Motion Events 
We use the image motion to estimate the hand movement. This task can be accomplished by either feature 
tracking or by computing the full optic flow. The image flow detection technique we use is based on the 
sum-of-squared-differences optic flow. The sensor acquisition procedure (grabbing images) and uncertainty 
in image processing mechanisms for determining features are factors that should be taken into consideration 
when we compute the uncertainty in the optic flow. 

One can model an arbitrary 3-D motion in terms of stationary-scene/moving-viewer as shown in Figure 4. The 
optical flow at  the image plane can be related to the 3-D world as indicated by the following pair of equations 
for each point (x, y) in the image plane [12] : 

where v, and vy are the image velocity at image location (x, y), (Vx, Vy,VZ) and (ax, RY, Rz) are the 
translational and rotational velocity vectors of the observer, and Z is the unknown distance from the camera 
to the object.. In this system of equations, the only knowns are the 2-D vectors v, and vy, if we use the 
formulation with uncertainty then basically the 2-D vectors are random variables with a known probability 
distribution. A number of techniques can be used to linearize the system of equations and to solve for the 
motion and structure parameters as random variables [4,5,15]. 



Figure 4 : 3-D Formulation for Stationary-SceneIMoving Viewer 

4 Modeling and Recovering 3-D Uncertainties 
The uncertainty in the recovered image flow values results from sensor uncertainties and noise and from the 
image processing techniques used to extract and track features. We use a static camera calibration technique 
to model the uncertainty in 3-D to 2-D feature locations. The strategy used to find the 2-D uncertainty in 
the features 2-D representation is to utilize the recovered camera parameters and the 3-D world coordinates 
(I,, y,, z,) of a known set of points and compute the corresponding pixel coordinates, for points distributed 
throughout the image plane a number of times, find the actual feature pixel coordinates and construct 2-D 
histograms for the displacements from the recovered coordinates for the experiments performed. The number 
of the experiments giving a certain displacement error would be the r axis of this histogram, while the x and 
y axis are the displacement error. The three dimensional histogram functions are then normalized such that 
the volume under the histogram is equal to 1 unit volume and the resulting normalized function is used as the 
distribution of pixel displacement error. 

The spatial uncertainty in the image processing technique can be modeled by using synthesized images and 
corrupting them, then applying the feature extraction mechanism to both images and computing the resulting 
spatial histogram for the error in finding features. The probability density function for the error in finding 
the flow vectors can thus be computed a s  a spatial convolution of the sensor and strategy uncertainties. We 
then eliminate the unrealistic motion estimates by using the physical (geometric and mechanical) limitations 
of the manipulating hand. Assuming that feature points lie on a planar surface on the hand, then we can 
develop bounds on the coefficients of the motion equations, which are second degree functions in x and y in 
three dimensions, v, = fi ( x ,  y) and v, = fi(xl y). 

Figure 5 indicates the maximal u, that can ever be registered on the CCD array of the camera, the x and y 
are in millimeters and the x - y plane represents the CCD image plane, the depth Z is the maximal v, in 
millimeters on the CCD array that can ever be registered. As an example, we write the equation governing 
the maximum v, value in the first quadrant of the x - y plane (x+, y+). 

where the subscripts s and 1 denote lower and upper limits, respectively. The above envelopes are then used to 
reject unrealistic 2-D velocity estimates at different pixel coordinates in the image. The 2-D uilcertainties are 
then used to recover the 3-D uncertainties in the motion and structure parameters. The system is linearized 
by either dividing the parameter space into three subspaces for the translational, rotational and structure 
parameters and solving iteratively or using other linearization techniques and/or assumptions to solve a linear 



system of random variables [4,5,6,15,16,18]. As an example, the recovered 3-D translational velocity cumulative 
density function in the Z direction for an actual world motion, Vx = 0 cm, Vy = 0 cm and Vz = 13 cm, is 
shown in Figure 6. 

Figure 5 : Maximal v, Figure 6 : CDF of Vz 

5 Conclusions 
State transitions are asserted within the DEDS observer model according to the probability value of the 
occurrence of an event. Events are thus defined as ranges for the different parameters. The problem then 
reduces to computing the corresponding areas under the refined distribution curves. An obvious way of 
using those probability values is to establish some threshold values and assert transitions according to those 
thresholds. It might be the case that none of the obtained probability values exceeds the set threshold value 
and/or all values are very low. In that case, there is a good chance that we are at either the wrong automata 
state. The remedy to such problems can be implemented through time proximity, that is, wait for a while 
(which is to  be preset) till a strong probability value is registered and/or backtrack in the automaton model 
for the observer till a high enough probability value is asserted, a fail state is reached or the initial ambiguity 
is asserted. The backtracking strategy can be implemented using a stack-like structure associated with each 
state that has already been traversed, which includes a sorted list of the computed event probabilities and a 
father-state variable. 

Figure 7 : A Grasping Task 

Experiments were performed to  observe the robot hand. The low level visual feature acquisition is performed 
on the Datacube MaxVideo pipelined video processor a t  frame rate. The observer and manipluating robots 
are both PUMA 560's and the Lord experimental gripper is used as the manipulating hand. A grasping task 
using the Lord gripper, as seen by the observer, is shown in Figure 7. Thus, we have proposed a new approach 
to solving the problem of observing a moving agent. Our approach uses the formulation of discrete event 



dynamic systems as a high-level model for the framework of evolution of the visual relationship over time. 
The proposed formulation can be extended to accommodate for more manipulation processes. Increasing the 
number of states and expanding the events set would allow for a variety of manipulating actions. 
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