575

A Generic Simulator/Controller for Robot
Manipulators

Abdelshakour A. Abuzneid and Tarek M. Sobh

Department of Computer Science and Engineering
University of Bridgeport
169 University Avenue
Bridgeport, CT 06601, USA

Abstract. General form application is a very important issue in industrial
design. Prototyping a design helps in determining system parameters, ranges
and in structuring better systems. Robotics is one of the industrial design fields
in which prototyping is crucial for improved functionality. Developing an
environment that enables optimal and flexible design using recenfigurable
links, joints, actuators and sensors is essential for using robots in the education
and industrial fields. We propose a PC-Based software package to control,
monitor and simulate a generic SIX-DOF robot including a spherical wrist. This
package may be used as a black box for the design implementations or as a
white (detailed) box for learning about the basics of robotics and simulation
technology.

1 Introduction

To design a complete and efficient robotic system there is a need for performing a
sequence of cascaded tasks. The design task starts by determining the application of
the robot, the performance requirements, and then determining the robot configuration
and parameters suitable for that application. The physical design starts by ordering the
parts and assembling the robot. developing the required software (controller,
simulator and monitor) and hardware elements is the next task. The following stage
includes manipulator testing which determines the performance of the robot and the
efficiency of the design. Our aim is to build a complete PC-Based software package
for control, monitoring and simulation of a 6-DOF manipulator, including a spherical
wrist. The design will be independent of any existing specific robot parameters. The
package will be an integration of several packages. Figure 1 shows how such a pc-
based robot can be controlled using different schemes [2].

The idea for this work came from a project done in a robotics class at the Department
of Computer Science and Engineering, in the School of Science, Engineering and

576

Technology, University of Bridgeport. The project was to design a full integrated
package to control, monitor, and simulate an SIR-1 robot. The SIR-1 robot is a 6-DOF
robot with a gripper. While work was done on that project, we were continuously
wishing for the existence of such a prototyping package in the market. We did a wide
range search and exhaustive market survey for what was available. We searched a
variety of papers, books, book chapters and Internet sites. We have also talked to a
number of companies that manufacture manipulators and we found out that
reasonable progress has been done in this field. Some of the companies introduce
prototyping for special or specific manipulators. Others try to design a whole
prototyping package introducing mainly numerical solutions rather than closed form
solutions. Unfortunately a generic pc-based controller/monitor/simulator package for
a generic manipulator does not exist at this time. Initially it looked like it is
impossible to find complete closed form solutions for a 6-DOF robot by solving a
complicated set of nonlinear equations. This view is changing nowadays. There is a
large number of research papers that scientists produce to find a general form solution
for a certain configuration of a robot [1,6,7]. If the results of these research papers can
be tested and then gathered within a complete and well designed package, the dream
of a closed form prototyping controller may be reachable. The variety of powerful
mathematical packages available nowadays such as Matlab, Mathematica, Maple,
MatCom and others help in achieving our goals. From this point of view, we may be
able to find closed form solutions for a 6-DOF robot with a spherical wrist to be the
Medicare for the complexity of robot control design.

2 Background

The final design of the software package will be a collection of smaller packages.
Each of these packages will be independent of any specific set of robot parameters.
This can be done by making all calculations symbolically. Needless to say, that will
make the mathematics more difficult. By using mathematical application packages
available nowadays such as Maple and Mathematica the job will be easier but not
trivial. The next few sections give a theoretical background.

2.1 Forward kinematics

Forward kinematics is used to describe the static position and orientation of the
manipulator linkages. There are two different ways to express the position of any link:
using the Cartesian space, which consists of position (x,,z), and orientation, which
can be represented by a 3x3 matrix called the rotation matrix; or using the joint space,
by representing the position by the angles of the manipulator's links. Forward
kinematics is the transformation from joint space to Cartesian space. This
transformation depends on the configuration of the robot (i.e., link lengths, joint
positions, type of each joint, etc.). In order to describe the location of each link
relative to its neighbor, a frame is attached to each link, then we specify a set of

577
parameters that characterize this frame. This representation is called the Denavit-
Hartenberg notation. Figure 2 shows a physical six-link robot manipulator.

The Denavit-Hartenberg parameters are [1]:

a; distance along x; from O; to the intersection of the x; and z; axes.

d; distance along z;, from O,; to the intersection of the x; and z.; axes. d; is variable if
joint / is prismatic.

o; the angle between z;.; and z; measured about x;.

©; the angle between x;.; and x; measured about z;, is variable if joint i is revolute.

The Denavit-Hartenberg parameters for our prototype robot are shown in Table 1.
The parameters for the last 3 links are constants with the exception of 0's, the joint
variables and dg the offset parameter which represents the offset distance between O
and the center of the wrist O. ay,as and as are zeros because the distance along x; from

O; to the intersection of x; and z;., is zero.

The corresponding Transformation matrix is
where
6
Ay = 44, 44,44 @

4; = Rot, ., Trans, ; ,Trans, . ,Rot, . @

x,a;%

0 e L e g 2
0 0 0 1

578

Digital Control

Anslog Control

Amplifiec

Simulation
Control
Monitoting
PLD Controller

3-Link Robot

Fig. 1. Controlling the robot using different schemes

2.2 Inverse Kinematics
Inverse kinematics solves for the joint angles given the desired position and
orientation in Cartesian space. This is a more difficult problem than forward

kinematics. The complexity of inverse kinematics can be described as follows, Given
a 4x4 homogeneous transformation which gives the required position and

orientation :
R d
H= ; 4
ii 0 1] C)]

The homogeneous transformation matrix results in 12 nonlinear equations in
16-unknown variables (aj,a,,a3,01, 05, 03,0, ... 8,dy , dy, ds, dg).

%(ql"--’q(;):Hﬁ ®)

where i=1,2,3 ,j=1,2,3,4.

Link a; 04 d; 6
1 a; [0 51 dl 91
2 a Cly d2 92
3 a3 o3 ds 6
4 0 -90 0 A
5 0 +90 0 6s
6 0 0 dg B¢

Fig. 2.

A physical six-link robot manipulator

579

580

For example, to find the corresponding joint variables (0,, 0,,ds,0 49 58 ¢) for
RRP:RRR manipulator shown in Figure 2 where

)

e e, e d,
[0 Ol J

We must solve 12 simultaneous set of nonlinear equations. The first glance
at a simple homogeneous transformation matrix eliminates the possibility of finding
the solution by solving those 12 simultaneous set -of nonlinear trigonometric
equations. These equations are much too difficult to solve directly in closed form and
therefore we need to develop efficient techniques that solves for the particular
kinematics structure of the manipulator. To solve the inverse kinematics problem,
closed form solution of the equations or a numerical solution could be used. Closed
form solution is preferable because in many applications where the manipulator
supports or is to be supported by a sensory system, the results need to be supplied
rapidly (in real-time) [1]. Since inverse kinematics can result in a range of solutions
rather than a unique one, finding a closed form solution will make it easy to
implement the fastest possible sensory tracking algorithm.

One aim of this work is to try to find closed solutions for a prototype robot
which is a general 3-DOF robot having an arbitrary kinematic configuration
connected to a spherical wrist. These closed form solutions could be attained by
different approaches [3,6,7]. One possible approach is to decouple the inverse
kinematics problem into two simpler problems, known respectively, as inverse
position kinematics, and inverse orientation kinematics [1,3]. To put it in another
way, for a six-DOF manipulator with a spherical wrist, the inverse Kinematics
problem may be separated into two simpler problems, by first finding the position of
the intersection of the wrist axes, the center, and then finding the orientation of the
wrist. Lets suppose that there are exactly six degrees of freedom and the last three
Joints axes intersect at a point O. We express the rotational and positional equations as

flan)5 %

ds(q--sqs) = d ®

581

where d and R are the given position and orientation of the tool frame.

The assumption of a spherical wrist means that the axes zy, zs and z intersects at O
and hence the origins O, and Os assigned by the D-H convention will always be at the
wrist center O. The importance of this assumption for inverse kinematics is that the
motion of the final three links about these axes will not change the position of O. The
position of the wrist center is thus a function only of the first three joint variables.
Since the origin of the tool frame Oy is simply a translation by a distance ds along the
zs axes from O, the vector Og in the frame OX,Y, is

0, -0 = ~d,Rk ®

Note that R is multiplied by £ because it is a translation along z axes.

Suppose P_ denotes the vector from the origin of the base frame to the wrist center.
Thus, in order to have the end-effector of the robot at the point d with the orientation
of the wrist center O located at the point

P =d-dRk (10)

the orientation of the frame OyX,YZ, with respect to the base is given by R. If the
components of the end-effector position d are denoted by dx,dy,dz and the
components of the wrist center P_ are denoted by Px,Py,Pz then this equation results
in the relationship

V}J = {dy ~d6123J (1n
E d, —dgty,
Using equation 10 we may find the values of the first three joint variable. Thus for

this class of manipulators, the determination of the inverse kinematics can be
summarized in 3 steps [1}:

Step 1: Find q;,9;,q3 such that the wrist center P, is located at P.=d-dsk
Step 2: Using the joint variables determined in Step 1, evaluate R(0,3).
Step 3: Find a set of Euler angles corresponding to the rotation matrix

R =(R)"R

582

2.3 Velocity and Inverse Velocity Kinematics

In order to move the manipulator at constant velocity, or at any prescribed velocity,
we must know the relationship between the velocity of the tool and the joint

velocities. To calculate the velocity, the Jacobian matrix should be constructed as
follows

i (12)

where

J =

i

I:ZH x(0, - 0.'-1)J a3)

Zia

ifi is a revolute and

Zj :
J, = : 14)

ifiis a prismatic, where z is the first three elements in 3™ column of Ty and O; is
the first three elements in the 4™ column of Tio)- Then forward velocity will be

X =J(g)q a3

The inverse velocity problem becomes one of solving the system of linear equations.
The Inverse Velocity Kinematics will then be

g=J X (16)

2.4 Acceleration and Inverse Acceleration Kinematics

Differentiating (15) yields the acceleration equation

X=J(q)g+ ;,;J(q)q an

By solving 16 for inverse acceleration, we find

. e S :
g=J(@)" X-J(g) ‘EJ(q)q (18)

583
2.5 Singularities

Singularities represent configurations from which certain directions of motion may be
unattainable. It is possible to decouple the determination of a singular configurations
for those manipulators with a spherical wrist into two simpler problems. The first is to
determine the arm singularities, that is, ingularities resulting from motion of the arm,
which consists of the first three or more links, while the second is to determine the
wrist singularities resulting from motion of the spherical wrist. Suppose that n=6, that
is, the manipulator consists of a 3-DOF arm with a 3-DOF spherical wrist. In this case
the Jacobian matrix is a 6x6 matrix and a configuration is singular if and only if

detJ(g) =0 19)
if we now partition the Jacobian matrix into 3x3 blocks as
Jae
J=, Jo]{ i ”] 20
Jn Jn

then, since the final three joints are always revolute

i __|:33X(06_03) z,x(0s - 0,) st(oﬁ_Os):l
=

23 Z4 Zs

@n

Since The wrist axes intersect at a common point O, if we choose the coordinate
frames so that 0;=0,~05=0¢=0, then J, becomes

{ 0.0 0} :
Jo = (22)
z, z, 2z
and the i-th column J; of J; is :
2 0-0,
J,- = Iizl—l X (tvl):l (23)
Zi

ifjointiis revolute and

Ziq
J; = 0" 24

if joint i is prismatic. In this case the Jacobian fnat'rix has the block triangular form

584

J= ["1' v] 25)

with determinant

detJ = detJ,, detJ,, (26)

where I;; and J;, are each 3x3 matrices. J;; has i-th column z, x (0-O,,) if joint i is
revolute, and z;, if joint i is prismatic, while

Iy = [23 24 Zs] @n

2.6 Dynamics

Manipulator dynamics is concerned with the equation of motion, the way in which the
manipulator moves in response to torques applied by the actuators, or external forces.
There are two problems related to manipulator dynamics that are important to solve:

e inverse dynamics in which the manipulator's equations of motion are solved for
given motion to determine the generalized forces required for each joint (control
stage) and

e direct dynamics in.which the equations of motion are integrated to determine the
generalized coordinate response to applied generalized forces (simulation stage).

The equation of motion for an n-axes manipulator are given by

0 = M(9)q+C(q,9)q+ F(g) + G)q) (28)

Where

The equation may be derived via a number of techniques, including the Lagrangian
method. Due to the enormous computational cost of this approach it is always
difficult to compute manipulator torques for real-time control based on the dynamic
equations. To achieve real-time performance many approaches were suggested,
including table lookup and approximation [4]. The most common approximation is to
ignore the velocity-dependent term C, since accurate positioning and high speed
motion are exclusive in typical robot application. Practically, a PID controller might
be a good option to achieve a real-time performance,

Q=04+k E+k,E+k, [Ear 29)

585

where k,, k, and k; are the derivative, proportional and integral parameters
respectively.

The advantages of using a PID controller are the following:

e Simple to implement

e Suitable for a real-time control

e The behavior of the system can be controlled by changing the feedback gains

2.7 Simulation

To simulate the motion of a manipulator, we may use the simulation module by
manipulating (28)

6=M (q)|Q-C(q,9)9-F(9)-G(q) (30)

This represents the direct or integral or forward dynamic formulation giving joint
motion in terms of input torques.M(q) is the symmetric joint-space inertia matrix and
for a 6-DOF manipulator M is an 6x6 symmetric matrix.C is the manipulator
Coiolis/centripetal torque and for 6-DOF manipulator C will be a 6x1 matrix.

Ty
; ’
Inverse g | a
, |Kinematics(po | 4 sysem | L | popot
— sition, velocity Cortroller
and i
% | acceleration) | ¢ h *

I inner update rate

Trajectory
Generator

Fig. 3.Trajectory Generator integrated in the control loop

586
2.8 Trajectory Generator

Trajectory generation describes the position velocity and acceleration of each
link. This includes how the front user interfaces to describe the desired behavior of
the manipulator. This could be a very complicated problem depending on the desired
accuracy of the system. In some applications we might need to specify only the goal
position, whereas in some application, we might need to specify the velocity with
which the end effector should move. Since trajectory generation occurs at run time on
a digital computer, the trajectory points are calculated at a certain rate, called the path
update rate. One is advantage of using a PID controller is a high update rate is
required to achieve reasonable accurcy. Our package role here is to calculate
frajectory points which generate a smooth motion for the manipulator. The
smoothness of motion is a very important issue due to physical considerations such as
the required torques that causes this motion, the friction at the joints, and the
frequency of update required to minimize the sampling error. Figure 3 shows how
trajectory generator can integrated in the control loop. It also shows two update rates, .
one is the inner update rate which update the system control with the actual joint
position and velocity. The other loop updates the system control with the required
joint values. The sampling of the two update rates can be different.

RRR:RRR
PRR:RRR
RPR:RRR
PPR:RRR
RPP:RRR
PRP:RRR
RPP:RRR
PPP:RRR

00 | O\ | | W D] ==

Table 2: Possible robot configuration

The black box includes

1. Full control loop implementation (PID & Dynamics based)
2. Full simulation loop
3. GUI with error analysis

587

3 Project Ideas and Progress

One target of the package is to find closed form solutions such that direct
supstitutions are made when parameters are entered. This requires determining which
parameters should be variables and which should be constants. Variables could be
robot parameter configuration variables or state variables. The former are variables
that define the structure of the manipulator, so they are constants for the same robot
(i.e. a's, a's, dynamic parameters...etc.).

The latter describe the state of the robot (Joint Variable). Thus 6; may be a state
variable if i-th joint is revolute otherwise, it is a configuration variable. When the
program is run, it will ask for the configuration of the robot (one of those listed in
Table 2. Then the program will decide what the robot configuration variables are and
ask the user to enter them one after another. According to the task the program is
asked to run, it will ask for the state variables. For example if the program is asked to
calculate the Inverse Kinematics, the program will ask for the target Cartesian
position and orientation to get the values of ¢'s as an output. When the front user asks
to do a task, the program calls the task handler. The task handler is a large set of
equations that are invoked when the front user enters the required input, and displays
the results rapidly. Figure 4 shows the task flow chart. The next few sections give a
few examples of how we managed to do the mathematics for the different tasks .

588

NO

SAME

CONF. iE

——YES:

ENTER ROBOT
CONFIGURATION
(TABLE 2)

L

ENTER
CONFIGURATION
VARIABLES

CONTROLLER/MONITOR
/SIMULATOR

ENTER TASK#
TABLE3

u

CALL TASKHANDLER

OTHER
TASK?

NO

110

Fig. 4. Task flow chart

589

References

Spong,M. W.,Vidyasagar,M. , Robot dynamics and control,Join Wiley & Sons
(1989).

Dekhil,M. ,Sobh,T. M. ,Henderson,T. C. ,Sabbavarpu,A., Mecklenburg,R. ,
Robot manipulator prototyping (Complete design review, University of Utah,7-
17.

Ho,C. Y. ,Sriwattanathamma, J., Robot kinematics, Symbolic Automation and -

Numerical Synthesis, Ablex Publishing Corporation,

Corke, P.I., Robotics Toolkit, CSIRO, Division of manufacturing technology,
(February 1994)

T. M. Sobh, M. Dekhil, T. C. Henderson, and A. Sabbavarapu, **Prototyping a
Three-link Robot Manipulator,” in ASME Press Series on Robotics and

Manufacturing; Recent Trends in Research and Applications, volume 6, pp. 781-

786, 1996.

Herrea-Benery,L. ,MuE. ,CainJ. T., Symbolic Computation of Robot
ManipulatorKinematics, Department of Electrical Engineering, University of
Pittsburgh

Rieseler,H., Wahl,F. M., Fast symbolic computation of the inverse kinematics of
robots, Institute for Robotics and computer control, Technical University of
Braunschweig.

M. Dekhil, T. M. Sobh, T. C. Henderson, and R. Mecklenburg, **UPE: Utah
Prototyping Environment for Robot Manipulators.” in the Journal of Intelligent
and Robotic Systems, 17: 31-60, 1996.

M. Dekhil, T. M. Sobh, T. C. Henderson, and R. Mecklenburg, **UPE: Utah
Prototyping Environment for Robot Manipulators". In proceedings of the IEEE
International Conference on Robotics and Automation, Nagoya, Japan, May
1995.

. M. Dekhil, T. M. Sobh, and T. Henderson, ““URK: Utah Robot Kit — A 3-link
Robot Manipulator Prototype.”. In proceedings of the IEEE International

Conference on Robotics and Automation, San Diego, May 1994

