Copyright © IFAC Intelligent Control Systems and
Signal Processing, Algarve, Portugal, 2003

ELSEVIER
TSRO

IFAC

TSRS <
PUBLICATIONS

www.elsevier.com/locate/ifac

A FRAMEWORK FOR REVERSE ENGINEERING VLSI CHIPS

Khaled M. Elleithy and Tarek Sobh

Computer Science and Engineering Department
University of Bridgeport
Bridgeport, CT 06601
elleithy @bridgepoit.edu , sobh@bridgeport.edu

Abstract: Reverse engineering process of VLSI chips is a complex operation that can cost
from $10,000 for the simplest chips to hundreds of thousands of dollars for complex
chips. In this paper we are presenting an overview of the process of reverse engineering
of VLSI chips. The paper outlines the steps involved in the process of reverse
engineering of chips as well as the different techniques used to extract the functionality of
the chip. Also, the paper presents two case studies of reverse engineering of chips.

Copyright © 2003 IFAC
1. INTRODUCTION

Reverse engineering can be defined as the construction
of a high-level functional representation of an
implemented system to facilitate one's understanding of
the system. The construction process is algorithmic and
uses the strategy of generating descriptions at
successively higher levels of abstraction. For ICs, each
step consists of identifying sets of components that
constitute an abstract function and then recasting the
circuit description in terms of these abstractions.

Designers use reverse engineering to determine
system's specifications, output functions, or other
design characteristics from an existing implementation.
This contrasts with the customary "forward"
(specification to implementation) design process.
Companies often reverse-engineer their competitors'
products to discover how they are made or to evaluate
their quality. In the software industry, for example,
reverse engineering refers to updating, for reuse,
programs whose specifications have been lost or
inadequately documented as described by Chikofsky
(1991). In computer hardware, designers have used
reverse engineering to extract gate-level models from
transistor circuits (Madisetti ef al. 1999).

Madiset1 et al. (1999) introduced rationale for
reengineering legacy embedded systems. Legacy
systems are hardware and/or software systems
currently performing useful tasks but requiring
reengineering or upgrading for various reasons. The
most pressing reasons are parts obsolescence and
system needs such as greater functionality, increased
processing and interface scalability, better form (size,
weight, power, volume), and decreased maintenance
and life-cycle support costs. Another reason is the
availability of superior algorithms, architectures, and

technologies that meet or exceed the system's
specifications, often at a lower cost.

Figure 1, shows the relationship between requirements,
design, and implementation and where forward
engineering and reverse engineering fit. Chickosfky
and Cross (1991) defined the following terms:

e Requirements: specification of the problem
being solved, including objectives, constraints
and business rules

e Design: specification of the solution

e Implementation: coding, testing, and delivery of
the operational system

e Forward engineering: is the traditional process
of moving from high-level abstractions and
logical, implementation-independent designs to
the physical implementation of a system.

e Reverse engineering. Reverse engineering is the
process of analyzing a system to identify the
system components and their relationships and
create representation of the system in another
form or at a higher level of abstraction.

Section 2 of this paper provides a literature survey and
presents the most up-to-date reported research in the
area of reverse engineering. The fowling sections
present two case studies. The first case is the Reverse
Engineering of the ISCAS-85 benchmark. The second
case was reverse engineering of the AWACS Rader
System by the Air Force which is a project the Air
Force awarded Northrop Grumman Corporation for a
proof-of-concept project aimed at capturing the
functionality of the E3 Airborne Warning and Control
System (AWACS) radar system hardware in VHDL.
The final section of the paper offers summary and
conclusions.

Requirements
(Constraints, objectives, Desien
business rules)

Forward
engineering

Reverse

engineering

Design
recovery

Reengineering
Fenovation)

Restructuring

Imolementation
Forward
engineering

Reverse
engineering
oK) _
N—J Design
recovery

eengineering

renovation)
Redocumentation, restruct

Figure 1: Relationship between terms (Chikofsky and Cross 1990).

2. REVERSE ENGINEERING OVERVIEW

Reverse engineering is the inverse of the design
process (Chisholm er al. 1999). The design process
begins with an abstract description of a target device
and, via a succession of refinements, produces a
design that can be implemented directly. Reverse
engineering, on the other hand, begins with the
disassembly of a manufactured device and culminates
with an abstract description of the device's
functionality. In the case of integrated circuits, the
disassembly process consists of obtaining an image
of the internal structure of a circuit and extracting a
transistor-level netlist from the image. This
description is then transformed to successively higher
levels of abstraction until a suitably high-level
description of the circuit's behavior is obtained.

The key to applying computer-aided software and
hardware engineering to the maintenance and
enhancement of existing systems lies in applying
reverse-engineering approaches. However, there is
considerable confusion over the terminology used in
both technical and marketplace discussions. In
(Chikofsky and Cross 1990) the authors define and
relate six terms: forward engineering, reverse
engineering, redocumentation, design recovery,
restructuring, and reengineering. Their objective was
not to create new terms but to rationalize the terms
already in use. The resulting definitions apply to the
underlying engineering processes, regardless of the
degree of automation applied.

384

Electronics products of the future must be realized
efficiently promising higher performance at lower
cost within much shorter product design and upgrade
cycles. ASIC foundries and EDA vendors see
increasing VLSI integration capabilities as a
promising new business opportunity through the
System-on-Chip (SOC) paradigm that extends ASICs
design from the component level to the system level.
The systems integration community and electronics
packaging design vendors see the systems market as
an extension of their current business, the so-called
Systems-on-Package (SOP) paradigm, and one that
raises their role to new level of importance in the
product supply chain linking electronics packaging
directly to product specification, early design and
ASIC design. In addition to political issues there exist
technical, legal, and business challenges, both
paradigms must overcome to find broad-based
acceptance. In (Tummala and Madisetti 1999) the
authors suggest that the Systems-on-Package (SOP)
paradigm promises a higher return on investment
(ROI) at a much lower risk for the electronics
products design, well into the new millennium.

In (Jarzabek and Woon 1997) the authors start to
formalizing what we already know about reverse
engineering, and propose a framework for describing
and evaluating reverse engineering methods and tools.
First, they build design models for a source language
and for the recovered design. Then, they describe what
a given reverse engineering method or tool achieves as
a formal mapping from the source language design
model 1nto the recovered design model. They show use
object recovery scenarios to illustrate the presented
concepts.

By the early 1990s the need for reengineering legacy
systems was already acute, but recently the demand
has increased significantly (Muller et al. 2000).
Legacy hardware and software systems are defined as
those that are currently performing useful tasks, but
face possible interruption or termination of operation
in the future due to a number of reasons (Madisetti et
al. 1999). The "push" reasons include the need for
increasing functionality, processing and interface
scalability, better form (size, weight, power, volume)
requirements, decreased maintenance and lifecycle
support costs, and resilience to parts obsolescence.
The "pull" reasons can include the availability of
superior competing algorithms, architectures, and
technologies meeting (or exceeding) the
specifications of the legacy system, often at a lower
cost. Legacy systems can be found everywhere in the
military and commercial electronics area. Indeed, in
commercial arena, electronics systems, such as PCs
and cellular phones, are often obsolete in a matter of
months, and increasing pressures of time-to-market
has institutionalized re-engineering of products. In
the mulitary arena, the long lifetimes of deployed
systems, decades in the case of radar systems, has
made it inevitable that one is faced with the problem
of legacy systems.

The demand by all business sectors to adapt their
information systems to the web has created a
tremendous need for methods, tools, and
infrastructures to evolve and exploit existing
applications efficiently and cost-effectively. Reverse
engineering has been heralded as one of the most
promising technologies to combat this legacy systems
problem. Muller et al. (2000) present a roadmap for
reverse engineering research for the first decade of
the new millennium, building on the program
comprehension theones of the 1980s and the reverse
engineering technology of the 1990s.

Designer's productivity has become the key-factor of
the development of electronic systems. An increasing
application of design data reuse i1s widely recognized
as a promising technique to master future design
complexities. Since the intellectual property of a
design 1s more and more kept in software-like
hardware description languages (HDL), successful
reuse depends on the availability of suitable HDL
reverse engineering tools. In (Mueller-Glaser er al.
1996) new concepts for an integrated HDL reverse
engineering tool-set are presented as well as an
implemented evaluation prototype for VHDL
designs. Starting from an arbitrary collection of HDL
source code files, several graphical and textual views
on the design description are automatically generated.

385

The tool-set provides novel hypertext techniques,
expressive graphical code representations, a user-
defined level of abstraction, and interactive
configuration mechanisms in order to facilitate the
analysis, adoption and upgrade of existing HDL
designs.

Digital designers normally proceed from behavioral
specification to logic circuit; rarely do they need to
go in the reverse direction. One such situation
examined in (Hayes and Hansen 1999): recovering
the high-level specifications of a popular set of
benchmark logic circuits. The authors present their
methodology and experience in reverse engineering
the ISCAS-85 circuits. They also discuss a few of the
practical uses of the resulting high-level benchmarks
and make them available for other researchers to use.

The problem of finding meaningful sub-circuits in a
logic layout appears in many contexts in computer-
aided design. Existing techniques rely upon finding
exact matching of subcircuit structure within the
layout. These syntactic techniques fail to identify
functionally equivalent subcircuits, which are
differently implemented, optimized, or otherwise
obfuscated. In (Doom et al. 1998) a mechanism for
identifying functionally equivalent subcircuits that is
capable of overcoming many of these limitations is
presented. Such semantic matching is particularly
useful in the field of design recovery.

In (Prinetto et al. 1998) a new approach for
sequential circuit test generation is proposed that
combines software testing based techniques at the
high level with test enhancement techniques at the
gate level. Several sequences are derived to ensure
100% coverage of all statements in a high-level
VHDL description, or to maximize coverage of paths.
The sequences are then enhanced at the gate level to
maximize coverage of single stuck-at faults. High
fault coverages have been achieved very quickly on
several benchmark circuits using this approach.

As a real life example of reverse engineering the Air
Force funded of the Electronic Parts Obsolescence
Initiative (EPOI) to insure Air Force mission
readiness and increase nagging obsolescence
(Stogdill 199). EPOI is developing management &
re-engineering tools for defense systems affected by
parts obsolescence and reliability models for
commercially manufactured electronics utilized in
defense systems. This initiative currently consists of
eight programs covering three k9ey areas of work: 1)
Parts Obsolescence Management and Re-engineering
Tools, 2) The Application of Commercially

Manufactured Electronics (ACME), and 3) Pilot
Demonstration Programs. The initiative’'s main
technology foci are mixed signal electronics,
Application Specific Integrated Circuits (ASIC),
Physics of Failure validation with commercial field
return data, and standardized information exchange.

3. REVERSE ENGINEERING TECHNIQUES

Hayes and Hansen (1999) have defined the following
techniques for reverse engineering of hardware:

® Library modules. Common components, such as
multiplexers, decoders, adders, and CLA
generators, are found in IC manufacturers’ data
books or cell libraries and in textbooks. The
modules usually exist in variants due to differences
in input size (fan-1n or word length) and gate types.

® Repeated modules. Often a subcircuit whose logic
function is not apparent occurs frequently,
especially in data-path circuits where the same
circuit slice repeats for different bits of input data.

® Expected global structures. After recognizing
several modules, the reverse engineer can look for
common structures, signals, or functions that use
these modules.

® Computed functions. With a few structural clues to
a subcircuit's role, we can compute its logic
function in symbolic or binary (truth table) form,
then relate it to known functions or to other circuit
functions. This i1s feasible only for functions of
typically no more than four or five signals.

® Control functions. We can often identify key
control signals whose settings partition a complex
function into simpler ones.

®Bus structures. The outputs of repeated modules
often can be grouped into buses. Further circuit
partitioning can result from noting where these
common signals lead.

eCommon names. When analyzing netlists, we
sometimes find a shared name among several
elements. We may not know what that name
implies, but grouping the elements together
temporarily can lead to further structural insights.

® Black boxes. If all else fails, we can encapsulate a
circuit as a module of unknown function or black

386

box. This step is unavoidable when dealing with
low-level control circuits consisting of truly
random logic.

4. THE REVERSE ENGINEERING PROCESS

Chishom, et. al. suggested the following outline for
the reverse-engineering process.

A. Sample Preparation

The first step in reverse-engineering an integrated
chip is to extract the chip's design layout. This
involves removing the chip's overburden material
either by chemical etching or mechanical slicing,
which are both destructive. Removing the overburden
is an extracting process that must adequately expose
the underlying transistors and their interconnections
without damaging them.

B. Image acquisition

The next step is to scan the sample. The scanning
methodology used depends on the density of the
transistors in the sample. For example, a state-of-the-
art chip may require a scanning electron microscope
(SEM) with a highly accurate stage. The SEM
captures a series of high-resolution 1mages or
micrographs, which are assembled (via stitching or
mosaicking) to form a complete image of the device.
The image is stored as bitmap data.

C. Geometric Description

Next, we extract geometric data from the bitmapped
image. The software used for this process converts
the image into a geometric data stream format such as
GDS-II. This process depends on knowledge about
the implementation technology to provide recognition
of geometric entities.

D. Transistor Netlist

This step transforms the geometric description into a
transistor-level netlist via design rule checkers that
examine the geometric data and recognize physical
structures such as resistors and transistors.

E. Gate Level Netlist

This level consists of mapping transistor cells to
gates. Typically, there are a limited number of
mappings, suggesting that a pattern-matching

approach 1s well suited for automating this process.
However, the automation approach must be capable
of performing the mapping in the presence of
elements that have no logical function—elements
that boost a device's output without affecting the
logic.

F. Module Level Description

In this step we need to derive a module-level
description from the gate-level netlist.

G. Register Transfer and Behavioral Descriptions

Subsequent abstraction of the module-level
description produces a register-transfer-level
description. Still further abstraction results in a
behavioral description. At present, however, these
last two levels in the reverse-engineering hierarchy
are beyond technological capabilities.

5. CASE STUDY: THE ISCAS 85 BENCHMARK

The techniques presented in section 2 have been used
in reverse engineering the ISCAS-85 benchmark
circuits in (Hayes and Hansen 1999). In this section
we present the circuit for the most complex circuit of
this benchmark, which is 34-bit adder and magnitude
comparator with mput parity checking. The number
of gates for this circuit is 3512.

Statistics: 207 inputs; 108 outputs; 3512 gates

Function: 34-bit adder and magnitude comparator
with input parity checking

This benchmark circuit contains a 34-bit adder (M5),
a 34-bit magnitude comparator (M8) using another
34-bit adder, and a parity checker (M9). Each of the
XA, YA, and YB buses is fed by a set of 2:1
multiplexers controlled by the Sel input. Bits 31-22
of XA and YB can be set to logic 0 with the Mask
input. The two adders M5 and M8 are identical, and
are of carry select type, as are those of ¢5315. They
consist of alternating 4- and 5-bit blocks, with the last
block being 2 bits. The comparator (M8) of this
benchmark is similar to that of ¢2670. It performs the
comparison YB>XB (if Sel=0) or YB>!YAl (if
Sel=1) by calculating YB+!XB (if Sel=0) or
YB+!YAl (if Sel=1) (Note: the input bus YAl is
assumed to be inverted). The comparator has an
output (CoutY) for the whole 34-bit inputs as well as
an output (CoutY_17) for the 17-bit portion of its
inputs. Module M7 calculates the parity for the

387

following four parts of the adder output SumX:
SumX][8:0], SumX[17:9], SumX[26:18],
SumX([33:27]. Module M9 appears to be a type of
sanity checker that calculates the AND of the parities
of all its inputs.

Models:

* [Onginal ISCAS gate-level netlist
o in ISCAS-89 format
o 1n Verilog
e II. Verilog hierarchical netlist (functionally
equivalent to I)
e III. Venlog flat netlist (flat version of II;
functionally equivalent to I, but with minor
structural differences)

Evaluation of Reverse Engineering of ISCAS 85
Benchmark:

1. The reverse engineering reported in (Hayes
and Hansen 1999) starts with a gate level
towards higher level. This is different from
starting from a physical chip and extracting
transistor information then synthesis gate
level information.

2. A circuit of 3512 is a very small to circuit
compared to complex chips today that
contain millions of transistors which
contains millions of transistors.

6. A REAL LIFE EXAMPLE OF REVERSE
ENGINEERING: THE REDESIGN OF AWACS
RADER SYSTEM BY THE AIR FORCE

In August 1997, the Air Force awarded Northrop
Grumman Corporation a proof-of-concept project
aimed at capturing the functionality of the E3
Airborne Warning and Control System (AWACS)
radar system hardware in VHDL. The Air Force
Research Laboratory Materials and Manufacturing
Directorate and Northrop Grumman funded this
effort jointly. The project evaluated the cost-
effectiveness of describing the AWACS radar
synchronizers' functions in VHDL code and using the
VHDL model to redesign circuit card assemblies
plagued by parts obsolescence.

During the AWACS' long life cycle, designers have
developed several configurations of its AN/APY-1
and AN/APY-2 synchronizers. The current
synchronizer is a two-level card cage that resides in
the radar's analog cabinet. It consists of 29 circuit

card assemblies, of which 18 are unique styles and 17
contain a large number of obsolete components,
making them unsupportable or irreparable.

Northrop Grumman successfully developed a process
to capture the AWACS synchronizer functionality
with VHDL code. Using the code, they needed less
time than usual to redesign each assembly. Also, they
could use the latest VHDL model of the hardware as
a baseline when inserting new technology. Another
advantage was that one VHDL design could replace
multiple circuit card assemblies that could not be
repaired and for which no spares were available. For
approximately the same cost as replacing the single,
failed circuit card assembly, a replacement containing
the functionality of a whole group of assemblies
could be inserted into the system. The smaller
number of assemblies would cost less to procure and
the new system would be more reliable.

Cost Analysis

Item Cost
Saving per card $470,000
Saving for 33-AWACS fleet $15,100, 000
Cost for redesign each board using | $250,000
current technology

Cost for redesign the 17 board in the | $4,250,000
system

Cost of the Reverse Engineering of | $1,000,000
the board

Saving per system $3,250,000

The results of this proof-of-concept project will serve
as a model for further reducing the number of circuit
card assemblies in the AWACS radar. The process
model Northrop Grumman used to develop the
VHDL designs is applicable to all defense systems.
More details of this example can be found at (Stogdill
1999).

SUMMARY AND CONCLUSIONS

In this paper we have presented an overview of the
process of reverse engineering of chips. We have
discussed the steps involved in this process. We have
examined two case studies. In the first case we
examined the reverse engineering process of ISCAS-
85 benchmark. In the second case we examined the
reverse engineering of the AWACS radar System.

Reverse Engineering of the ISCAS-85 benchmark
starts with a gate level towards higher level. This is
different from starting from a physical chip and

388

extracting transistor information then synthesizing
gate level information. Also, The most complex
circuit used has 3512 gates, which is a very small to
circuit.

Reverse engineering of the AWACS Rader System
by the Air Force was a proof-of-concept project
aimed at capturing the functionality of the E3
Airborne Warning and Control System (AWACS)
radar system hardware in VHDL. The cost of
reengineering the board was $1,000,000.

REFERENCES

Chikofsky, E. J., Cross II, J. H. (1990). Reverse
Engineering and Design Recovery: A Taxonomy.
IEEE Software, January 1990, 13-17.

Chisholm, G., Eckmann, S. T., Lain, C. M., Veroff, R.
L.(1999) Understanding Integrated Circuits. IEEE
Design and Test of Computers, April 1999, 24-34.

Cifuentes, C., Fitzgerald, A. (1999) Is Reverse Engineering
Always Legal? IT Professional, March 1999, 42-48.

Doom, T., White, J., Wojcik, A., Chisholm, G. Identifying
High-Level Components in Combinational Circuits.
(1998) Great Lakes Symposium on VLSI 98,
Michigan, February 1998, 313.

Hayes, J. P., Hansen, M. C., Yalcin, H. (1999) Unveiling
the ISCAS-85 Benchmarks: A Case Study in Reverse
Engineering. IEEE Design and Test of Computers ,
July 1999, 72-80.

Jarzabek, S., Woon, 1. (1997). Towards a precise
description of reverse engineering methods and tools.
Ist Euromicro Working Conference on Software
Maintenance and Reengineering, Singapore, March
1997.

Tummala, R. R., Madisetti, V. J. (1999) System on Chip or

System on Package. IEEE Design and Test of

Computers, April 1999, 48-56.

Madisettl, V. K., Jung, Y. K., Khan, M. H., Kim, J., and
Finnessy, T. (1999) Reengineering Legacy Embedded
Systems. IEEE Design and Test of Computers, April
1999, pp. 38-47.

Mueller-Glaser, K. D., Lehmann, G., Wunder, B. (1996).
Basic Concepts for an HDL Reverse Engineering
Tool-Set.1996 International Conference on Computer-
Aided Design (ICCAD '96), Germany, November
1996, 0134.

Muller, H. A., Jahnke, J. H., B. Smith, D. B. Storey, M. A.
Tilley, S. R., and Wong, K. Reverse Engineering: A
Roadmap.

Prinetto, P., Vietti, R., Rudnick, E. M., Como, F., Ellis, A.
(1998) Fast Sequential Circuit Test Generation Using
High-Level and Gate-Level Techniques. Design
Automation and Test in Europe, February 1998, pp.
570.

Stogdill, R. C. (1999) Dealing with Obsolete Parts. (1999)
IEEE Design and Test of Computers, April 1999, pp.
17-25.

