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Discrete Event Dynamic Systems : An Overview 

Abstract 

In this report we present an overview for the development of a theory for discrete event 

dynamic systems (DEDS). Dynamic systems are usually modeled by finite state automata 

with partially observable events together with a mechanism for enabling and disabling a sub- 

set of state transitions. DEDS are attracting considerable interests, current applications are 

found in manufacturing systems, communications and air traffic systems, future applications 

will include robotics, computer vision and AI. We will discuss notions of modeling, stabil- 

ity issues, observability, feedback and invertibility. We will also discuss the perturbation 

analysis technique (PA) for analyzing and describing the behaviour of DEDS. 

Introduction 

In this report, we describe a recently developed framework for analyzing and controlling 

discrete event dynamic systems (DEDS) [ 5 ] .  The approach used in this framework is a 

state space approach that focuses on the qualitative aspects of DEDS. We consider the 

issues of st ability, observability, st abilizability by output feedback and invertibility within 

this framework. We also touch upon some ideas concerned with another, more quantitative- 

oriented, technique called perturbation analysis [6,7]. 



1.1 What is a discrete event dynamic system ? 

Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in 

which state transitions are triggered by the occurrence of discrete events in the system. Many 

existing dynamic system have a DEDS structure, manufacturing systems and communication 

systems are just two of them. The state space approach in representing and analyzing 

such systems will probably lead to more applications that might be incorporated into the 

framework of DEDS. It will be assumed in the development of the state space approach of 

analyzing DEDS that some of the events in the system are controllable, i.e, can be enabled 

or disabled. The goal of controlling DEDS is to "guide" the behaviour of the system in a 

way that we consider "desirable". It is further assumed that we are able to observe only a 

subset of the event, i.e, we can only see some of the events that are occurring in the system 

and not all. In some cases we will be forced to make decisions regarding the state of the 

system and how to control a DEDS based upon our observations only. 

1.2 Organization of the Report 

In the next section we will discuss the finite state model of a DEDS. This representation of 

a DEDS will be used in sections 3, 4, 5 and 6. This model will be a simple non-deterministic 

finite-space automaton. Graphical representations for DEDS automatons will be used as 

examples to explain the definitions and ideas presented in the next four sections. In section 

3, the notions of stability for a DEDS will be introduced and discussed. In section 4, we focus 

on the questions of observability and state reconstruction from intermittent observations of 

the event trajectory. Section 5 combines the ideas of sections 3 and 4 to address the problem 



of stabilization by output feedback and section 6 address the problem of reconstructing 

the event trajectory from observations. Section 7 touches upon the perturbation analysis 

technique for evaluating the performance of DEDS. 

2 Modeling 

The discrete event dynamic systems under consideration can always be modeled by a non- 

deterministic finite-state automata with partially observable and controllable events. In 

particular, one can make the distinction between classical automata theory [1,2,3,4] and our 

representation of DEDS in terms of the state transitions. In classical automata the events 

are inputs to the system, whereas in DEDS the events are assumed to be generated internally 

by the system and the inputs to the system are the control signals that can enable or disable 

some of these events. We can represent our DEDS as the following quadruple : 

where X is the finite set of states, C is the finite set of possible events, U is the set of 

admissible control inputs consisting of a specified collection of subsets of C, corresponding 

to the choices of sets of controllable events that can be enabled and I? C is the set of 

observable events. Some functions can also be defined on our DEDS as follows : 



where d is a set-valued function that spccifics the set of possiblc cvcnts dcfincd at  each 

state, e is a set-valued function that specifics thc set of cvcnts that cannot bc disabled 

at  each state, and f is the set-valued function that specifies state transitions from a state 

under diffcrent events. An output proccss can bc formalized simply : whenever an event in 

I? happens we sec it, othcrwise wc don't scc anything. 

Figure 2.1: A Simple Example 

We can visualize the concept of DEDS by an example as in Figure 2.1, the graphical 

represcrltation is quitc simi1a.r to a classica.1 finite automaton. IIcrc, circles dcnote states, 

and events are represented by arcs. The first symbol in each arc labcl dcnotes tllc event, 

while thc symbol following "/" dcnotes the corresponding output (if the event is observable). 

Finally, we mark the colltrollable events by ":u". Thus, in this example, X = {0,1,2,3), 

C = {a ,p ,6 ) ,  r = { a ,  61, and 6 is controllable a t  state 3 but not at  state 1. Also d(1) = 

e(1) = {a, 61, d(3) = (61, e(3) = 4, f (0, P )  = {0,3) etc. A transition, x -to y, consists of a 



source state, x E X, an event, cr E d(x), and a destination state, y E f(x,  cr). 

In general, a DEDS automaton A is a nondeterministic finite state automaton, however, 

if f (x, a) is single valued for x E X then A can be termed as a deterministic finite state 

automaton. A finite string of states, x = xox I . . .  xj is termed a path or a state tra.jectory from 

xo if x ; + ~  E f(xi ,d(xi))  for all i = O... j  - 1. Similarly, a finite string of events s = ala2...~~j 

is termed an event trajectory from x E X if al E d(x) and ai+l E d( f (x, crl a2...ai)) for all i, 

where we extend f to C* via 

with f (x, 6) = x. In our graphical example (Figure 2.1), aPPS is an event trajectory. 

Another realistic and simple example for a DEDS can be inodeled as a resource user. 

Where the Automaton will be a deterministic one in this case, with three states I (IDLE), 

R (REQUEST) and U (USE), and with transitions as shown. 



Here we take X = {I, R, U ) ,  C = {a, p , ~ ) ,  I? = (a, P,?). The (two) control patterns 

corresponds to enabling and disabling event P at state R. A transition R -+ U may occur only 

when ,B is enabled. More interesting examples for using resources arise with the concurrent 

control of several of the above resource user example. 

2.1 Generated Languages 

A collection of strings L c C* is termed a language over the alphabet C [9]. For example, 

for any x E X, L(A,  x) is a language over C which we refer to as the language generated by 

x i~ A. In our first example (Figure 2. l), L(A, 0) can be expressed as (P + Pi?)*, where "+" 
denotes the union of p and pS. 

A language is termed a regular language if it can be expressed by using concatenations, 

unions and *. Since we use a nondeterministic finite automaton to represent a DEDS, 

and we know from classical automata theory that any nondeterministic finite automaton 

can be converted to a deterministic finite one, it will always be the case that the languages 

generated by a state in A are regular, as deterministic finite automata always produce regular 

languages as opposed to more powerful models such as pushdown automata, grammars and 

turing machines. It will never be the case that a state will generate a palindrome language or 

a language like {aipila,p E C, i E N), where N is the set of natural numbers. A recognizer 

can always be constructed for such a regular language, it is also a fact that there exists a 

recognizer with the least possible number of states. Such a recognizer is termed minimal. 



2.2 Ranges and Liveness 

If we denote a transition labeled by a by +", then we can similarly let 4' denote a string 

of transitions s and +* denote any number of transitions, including no transitions. We can 

define the range of a state x by 

indicating the set of states that can reached from x, we can also define the range of a 

subset of states Q in X by 

An algorithm for computing R(A,Xo) for any Xo c X that runs in O(n) where n = 1x1 

can be easily formalized as follows : 

Let Ro = Qo = Xo and iterate 

Rktl = Rk U f ( Q k ,  C) 

Q k t l  = Rk+l n Rli 

Terminate when Rk+l = Rk. Then, R(A,Xo) = Rk. 

A state x E X is alive if d ( ~ )  # 4 for all y E R(A, x). A subset Y of X is termed a live 

set if all x E Y are alive. A system A is termed alive if X is a live set.  

3 Stability 

In this section we discuss the notions of stability and the possibility of stabilizing a discrete 

event dynamic system. In particular, we are going to concentrate on stability notions with 

respect to the states  of a DEDS automaton. Assuming that we have identified the set of 

10 



"good" states, E, that we would like our DEDS to "stay within" or do not stay outside for 

an infinite time, the problem would reduce to : 

Checking out whether all trajectories from the other states will visit E infinitely often. 

Trying to "guide" the system using the controllable events in a way such that the 

system will visit the "good" states infinitely often. 

We shall start by defining and testing for different notions of stability and then discuss 

ways to stabilize a system. We shall start by assuming that the DEDS model under consid- 

eration is an uncontrolled system with perfect knowledge of the state and event trajectories 

(C n r = d), to simplify developing the definitions and examples. 

3.1 Pre-Stability 

To capture the idea of stability , we can suppose that we have already identified a subset of 

states E in X that returning to E implies being in a position to continue desired behaviour 

from that point on. We can define the notion of a state in the DEDS being stable with 

respect to E in two stages. The first stage will be the weaker notion and will be termed 

pre-stability. We say that x E X is pre-stable if all paths from x can go to E in a finite 

number of transitions, i.e, no path from x ends up in a cycle that does not go through E. 



Figure 3.1: Stability Example 

In Figure 3.1, states 0, 2, 3, and 4 are pre-stable, since all transitio~ls from thcm can goto 

(0, 3) in a finite llulnber of transitions. State 1 is not pre-stable sincc i t  will stay forevcr 

outside E if an infinitely long string of 6's occurs. 

A definition of pre-stability call be forinalized as follows : 

Givcn a live system A and some E c X, a state x E X is pre-stable with rcspect to E 

(or E-pre-stable) if for all x E X ( A ,  x) such that 1x12 n, thcre cxists y E x such that y E E. 

We say that a set of statcs is E-pre-stablc iT all its clcn~cnts arc E-prc-stablc and a systc~n 

A is prc-stable if X is E-pre-stable. 

The restriction for liveness can be flexible in the sense that if all the dead states are within 

E ,  then an automaton might still be E- re-stable. It follows rrom the above definition that 

a state x E X is E-pre-stable iff x E E or f (x, d(x)) is E-pre-stable. The following algorithm 

computes the maximal E-pre-stable set A', within a systcm : 

12 



Let Xo = E and iterate : 

Xk+i = {xlf (x, d(2)) C Xk) UXk 

Terminate when Xk+l = Xk, then Xp = Xk. 

In Figure 3.1, it can be noticed that X1 = X2 = Xp = (0, 2, 3, 4). 

3.2 Stability 

The stronger notion of stability corresponds to returning to the set of "good" states E in a 

finite number of transitions following any excursion outside of E. Thus, given E, we define 

a state x E X to be E-stable if all paths go through E in a finite number of transitions and 

then visit E infinitely often. 

As an example, in Figure 3.1, where E = (0, 31, only 2 and 3 are stable states. State 1 

is not stable since the system can loop at 1 infinitely. State 0 although in E is not stable 

since the system can make a transition to 1 and then stays there forever, the same applies 

to state 4. 

We can use the previously defined notion of pre-st ability and define a state to be E-stable 

if all the states in its reach are E-pre-stable. In Figure 3.1, 0 and 4 are not E-stable since 

they can reach 1, which is not E-pre-stable. We can define stability as follows : 

Given a live A and x E X ,  x is E-stable iff R(A, x) is E-pre-stable. A Q C X is stable if 

all x E Q are stable. A system A is stable if X is a stable set, from which we can conjecture 

that A is E-stable iff it is also E-pre-stable. 



A much stronger notion of stability can be described as "staying" within a given set of states. 

We thus define f-invariance for a subset Q in X as follows : 

A subset Q of X is f-invariant if f (Q, d) c Q where 

f (Q? d, = U Z E Q  f ('7 d(x)) 

It follows that any trajectory that starts in an f-invariant set stays in that set forever, it 

also follows that a set Q is f-invariant iff R(A, Q) c Q. 

3.4 Pre-Stabilizability 

In this section we introduce control and reconsider the stability notions discussed before. We 

try to "guide" our system or some states of it to behave in a way that we consider desirable. 

Pre-stabilizability is described as finding a state feedback such that the closed loop system 

is pre-stable. We can then define pre-stabilizability formally as follows : 

Given a live system A and some E c X ,  x E X is pre-stabilizable with respect to E ( or 

E-pre-stabilizable ) if there exists a state feedback K such that x is alive and E-pre-stable in 

Ah'. A set of states, Q, is a pre-stabilizable set if there exists a feedback law IC(s)  ( A control 

pattern ) so that every x E Q is alive and pre-stable in AK, and A is a pre-stabilizable system 

if X is a pre-stabilizable set. 

As an example, in Figure 3.2, state 1 is pre-stabilizable since disabling y pre-stabilizes 1. 

However, disabling y at state 2 leaves no other defined events at  2 and "kills" it, so neither 

state 2 or 3 is pre-stabilizable. 



Figure 3.2: Example for the Notion of Pre-Stabilizability 

3.5 St abilizability and (f,u)-Invariance 

Stabilizability is an extension of pre-stabilizability. Stabilizability is dcscribcd as finding a 

statc fcedback such that thc closcd loop systcm is stablc. We can thcn dcfinc stabilizability 

formally as follows : 

Given a livc systc~n A and some E c X, x E X is stabilizablc with rcspcct to E ( or 

E-stabiliza.blc ) if thcrc exists a, statc fccdbacl< It' such that x is alivc and E-stable in Arc. 

A set of states, Q, is a stahilizable sct if there cxists a feedbaclc law K ( s )  (a control pattern) 

so that every x E Q is alive and stable in Ale, and A is a stabilizablc system if X is a 

stabilizable set. 



In Figure 3.3,  disabling ,O at  state 2 is sufficient to xnake the whole systcrn stable with 

respect to state 0. Disabling y at state 1 will help stabilize only statc 1, because the system 

can then continue looping betwecn states 2 and 3. Disabling ,B at  sta.tc 3 will not hclp 

stabilize or prc-stabilize any sta.tc. 

Using control patterns to "drive" a subsct of a systcrn t,o be I-invariant is still anothcr no- 

tion of ~tabilizabilit~y. A subset Q of is (f,u)-invariant if there cxists s sta.tc fccdback I( such 

that Q is f-invariant in A[,-. Anothcr rlotioll of (f,u)-invariancc is susta.inablc (f,u)-invariance. 

A subset Q of X is a sustaiilably (flu)-invariant set if thcrc cxists a state fccdback K such 

that Q is alive and f-invariant in AI;. 

Figure 3.3 ,' 

For examplc, in Figurc 3.4, disabling evcnt a. at  state 1 will makc the subsct (1, 2) 

sustainably (f,u)-invariant. Also, disabling event 6 at statc 1 will ma.ltc the subsct (0, 1) 

Figure 3 .4  



4 Observability 

In this section wc acldrcss thc problcrn of dctcrmining tlic current statc  of tlic systcm. 

In particular, tve are interested in observing a ccrtain sequcllce of obsci-uable events and 

making a decision regardiilg the state that t11e DEDS a~ltornato~l  A might possiblc be in. 

In our dcfi~lition of obscrvability, wc visualize an intcrmittcilt obscrvation rnodcl, no dircct 

mea.surclncnts of the state  are msdc, thc cvcnts wc obscrvc arc only thosc that arc in r C C, 

wc will not observc events in C nT and will not cven know that any of which has occurrcd. 

Sta.tc ambiguities arc allowcd to clcvclo~~ ( which must ha.ppcii if C # I' ) but tllcy arc 

required to be resolvable after a Bounded interval of events. This notion of observability can 

be illustra.ted gra.phica.Ily as in Figurc 4.1. 

1 I I I, 

t t t 
Output String 

Perfect state knowledge 

Figure 4.1: Notion of Obsemability: The state is known perfectly only at the indicated ' 
instants. Ambiguity may develop between these but is resolved in a bounded number . 

of steps. 

4.1 Requirements 

In dcvelopi~lg the thcory and cxamplcs wc sha.11 conccntratc on uilcontrollcd inodels of DEDS 

automa.tons with partial knowledge of thc event tra.jcctory. Due to the fact that we arc 

"sceing" only observable cvents in r in our systcm, it is not desirable to havc our automaton 



generate arbitrarily long sequences of unobservable events in C n F. A necessary condition 

to guarantee this is that the automaton after removing the observable events AIT, must not 

be alive. In fact, it is also essential that every trajectory in A ~ F  is killed in finite time by 

being forced into a dead state. It can be seen that the condition for a DEDS automaton to 

be unable to generate arbitrarily long sequences of unobservable events, is that AIT' must 

be D-stable, where D is the set of states that only have observable events defined ( i.e, 

D = {X E Xld(x) n-f;} ). 

4.2 State Observability 

As illustrated in Figure 4.1, a DEDS is termed observable if we can use the observation 

sequence to determine the current state exactly at intermittent points in time separated by 

a bounded number of events. More formally, taking any sufficiently long string, s, that can 

be generated from any initial state x. For any observable system, we can then find a prefix p 

of s such that p takes x to a unique state y and the length of the remaining suffix is bounded 

by some integer no. Also, for any other string t ,  from some initial state X I ,  such that t has 

the same output string as p, we require that t takes z1 to the same, unique state y. 

In Figures 4.2 and 4.3 a simple system and its observer are illustrated. It can be seen 

that the observer will never know when will the system be in states 3 , 4  or 5, since the events 

that takes the system to those states are unobservable ( S/c  means that S E C n ), namely 

S and y. There are two states in the observer which are ambiguous, however, another two 

states are singleton states, i.e, when our observer reaches them, we'll know the exact state 

that the DEDS in currently in. 



P I P  a l a  
3 

a / a  6 1 E 

Figure 4.2: A Simple Example 

Figure 4.3: Observer for  the system in Figure 4.2 



Had it been the case that our observer could, for example, loop forever in ambiguous 

states, then the DEDS would be unobservable. This leads to the following formal definition 

of observability that ties it with the notion of stability : 

A DEDS automaton A is observable iff E is nonempty and 0 is E-stable. 

where 0 is the observer for A and E is the set of singleton states of 0. It can be seen 

that the observer in Figure 4.3 is stable with respect to the nonempty subset of states (0, 

2) and thus the DEDS of Figure 4.2 is observable. 

4.3 Indistinguishability 

We term pair of states (x, y) indistinguishable if they share an infinite length output (ob- 

servable) event sequence. If we define : 

Yo = {x E XI By E X, y E C, such that x E f(y,  7)) 

6 = {x E X13y E X, y E r, such that x E f(y, y)} 

Y = Yo U Y, 

Then Y is the set of states x such that either there exists an observable transition defined 

from some state y to x, or x has no transition defined to it. As discussed above, the observer 

only uses the states in Y, and thus we can formally define indistinguishability for states in 

Y as follows : 

Given x E X, let L,(A, x) denote the set of infinite length event trajectories generated 

from x, and h(L,(A, x)) the corresponding set of output (observable) trajectories. The pair 

(x, y) E Y x Y is an indistinguishable pair if h(L,(A, x)) n h(L,(A, y)) # $. 



It can be noticed that in Figure 4.2, (0,2) is an indistinguishable pair since an infinite 

string of a ' s  is one of the possible observablc output evcnt scqucnccs from cithcr statcs. 

However, this system was shown to be observablc, thus the non-existcnce of indistinguisha- 

bilities is not required for obscrvability. If therc are indistinguishable states, wc will not 

always be able to deterlnine which of these wc wcre in at some point in the - past, but this 

does not rule out the possibility that we may occasionally know the current statc. 

4.4 WD Observability 

A systcln is tcrll~ed WD obscrvable if it is obscrvablc with a dclay. It is recluircd that there is 

perfcct knowlcdge of thc statc somc finitc number of transitions into the - past a t  intcrmittcnt 

points in time. Figure 4.4 illustrates the concept of WD observability. 

1 t * Output String 
Current Time Current Time , 

Perfect state knowledge 

Figure 4.,4: Observability with a Delay: The state, a Gnite number of transitions into 
the gast,'~s known perfectly at intermittent (but not necessarily fixed) points in time. 

As an example of a WD observa,ble DEDS, Figure 4.5 represent such an automaton and 

its observer. All events in this example are assumed to be observable. The system is not 

observable since the observer does not have any singleton states (E is empty). When a or 



p occurs, we do not have perfect lcnowlcdge of thc current state, but whcn either a or P 

happens we know perfectly what was the previous state. 

System Observer 

Figure 4. 5:- Example for WD Observability 

5 Output Feedback Stabiliaability 

In this section we combinc thc idcas discusscd in thc previous two scctions regarding ob- 

servability and stability to addrcss the problem of stabilization by dynamic output fcedback 

under partial observations. In this section wc concentrate on partially controllcd systems 

with partial knowledge of the evcnt trajectory. In particular, our goal is to dcvclop stabi- 

lizing compensators by cascadillg and a stabilizing statc fecdback dcfincd on the observer's 

state space. 



5.1 Requirements 

To attack the problem of output feedback stabilization, it should be noticed that we are 

actually trying to "manipulate" the system's observer, in other words, what we have available 

in a sequence of observable events (the system's output) and we are trying to use this output 

to control the behaviour of the system using only the events that we can control. It is then 

possible to redefine the problem of output feedback stabilization as the stabilization of the 

observer by state feedback. 

The obvious notion of output E-stabilizability (stabilizability with respect to E c X) 

is the existence of a compensator C so that the closed-loop system Ac is E-stable. It is 

possible that such a stabilizing compensator exists, such that we are sure that the system 

passes through the subset E infinitely often (E-stable) but we never know when the system 

is in E. A stronger notion of output feedback stabilizability would not only requires that the 

system passes through subset E infinitely often, but also that we regularly know when the 

system is in E. In out example and discussion we shall concentrate on this stronger notion 

of output stabilizability. 

5.2 Strong Output Stabilizability 

The basic idea behind strong output stabilizability is that we will know that the system is 

in state E iff the observer state is a subset of E. The fact that the observer state should be 

a subset of E instead of having the observer state of interest includes states in E is because 

we want to  guarantee that our system in within E. Our compensator should then force the 

observer to a state corresponding to a subset of E at intervals of at most a finite integer i 

23 



observable transitions. We can then formalize the notion of a strongly output stabilizable 

system as follows : 

A is strongly output E-stabilizable if there exists a state feedback IC for the observer 0 

such that OK is stable with respect to Eo = { 2 E Z I 2 c E ). 

where Z is the set of states of the observer. 

As an example, considering the DEDS and its observer in figure 5.1, where E = (1, 21, 

we have to check the observer stability (or stabilize the observer) with respect to Eo, because 

this is the only observer state that is a subset of E. As a start, we do not know which state is 

our system in (as denoted by the state (0, 1, 2, 3)),  however, using the observer transitions 

we can see that to achieve Eo-stability for the observer we only need to disable a at  the 

observer state (0, 2). It should be noted that all the events are observable in this DEDS 

automaton. 

6 Invertibility 

In this section we will discuss the notion of invertibility. The problem of invertibility arises 

due to the fact that a DEDS is, in general, a partially observable system. That is, "seeing" 

some events while observing a system does not imply that those events were the only ones 

that actually happened. The problem of reconstructing the full event sequence given only 

output (observable) events is what we term the invertibility problem. 



Sys tern 

Figure 5.1: Example for Strong Output Stabilizability (all the events are observable) 



6.1 Requirements 

In order to be able to tackle this problem we need to use the automata model of a DEDS, so it 

will be assumed that the model of the DEDS behaviour is known a-priori. The invertibility 

problem arises due to the fact that I' c C, had I' = C, invertibility would have been a 

trivial problem. The model we shall use in this section will be the standard model of a 

DEDS discussed in section 2, with partial knowledge of the event trajectory, however, the 

assumption that the system in uncontrollable will be made to simplify developing the theory. 

There are two notions of invertibility : The first notion assumes that the initial state in the 

DEDS automaton in known, the second notion does not assume that. It should be quite 

clear that the second notion will be harder to analyze, because it involves estimating the 

current state first. In our treatment of the problem we will discuss the first notion. 

By WD-invertibility we mean invertibility with a delay. We consider the DEDS automaton 

A that is the minimal automaton generating the event language L = L(A,  xo), so that all the 

states can be reached from xo, and no two states generate the same language. We also assume 

that A is deterministic. It should be "safe" enough to make those assumptions, because we 

will be concerned with the estimation of elements in L, we also can always choose a minimal 

deterministic automaton with an initial state that generates L, due to that fact that L will 

always be a regular language. 

In particular, we are concerned with the problem that given L (or A and xo), whether 

we can reconstruct an event trajectory s E L when we only observe the part of s in r. 
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+ Event sequence 

I I I I I I I I I I I I ~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ~ ~ ~ ~ ~ ~  sequence 
(intermittent observations) 

//////////// Reconstructed sequence 
Exact reconstruction Possible ambiguity 

Figure 6.1: Invertibility with a Delay: Given the output sequence, the event se- 
quence is reconstructed exactly but with some delay. The ambiguity a t  the end of the 
reconstructed string will be resolved using future observations. 

We define a WD-invcrtible language, as one in which we can, at any time, usc knowledge 

of the output ( observable ) seclueilcc up to that time to reconstruct the full cvcnt sequence 

up to a point at most an integer number of cvents n d  into the past. Figurc 6.1 shows a 

graphical expla.na.tion of the notion of JVD-invertibility. 

Figure 6.2: Example for WD-Invertibility: State 0 is the initial state. 



WD-invertibility can be illustrated by an example as in Figure 6.2. In this system, state 

0 in the initial state. The notation a/€ means that event a is not observable. In this case, 

L is WD-invertible with n d  = 4. It is invertible at all without delay (i.e, with n d  = 0). 

As an example, if we observe a2, the original input sequence could be ~ ( S C T ) ~  or ~ ( S C T ) ~ S  or 

aSaa,  etc., but the first three events are known with certainty. 

6.3 Ambiguity and Non-Invertible DEDS 

To discuss the notions of ambiguity and non-invertibility we need to define a few notations 

on languages. In particular : 

Lf(A, x)  : All the strings in L(A, x) with observable events as their last events. 

L1(A, x) : Those strings in Lf(A, x) that have only one observable event. 

L,(A, x)  : The set of strings in L1(A, x) that have a E r as the observable event. 

A DEDS automaton A is termed ambiguous if for some x E X and 7 E r, there exists 

distinct strings s, t E L,(A, x) such that f (x, s) = f (x, t).  Moreover, if A ambiguous, then 

L is not WD-invertible. In other words, if there exists two different sequences of events 

taking a state to another, and with the same observable event for both sequences, then 

the language is not WD-invertible. This is because no future behaviour will enable us to 

distinguish between those strings. 



Figure 6.3: Example for an Ambiguous System 

In the above example (Figure 6.3), the system is ambiguous as both a6 and P6, which 

produce the same output ( observable events ), take statc 0 to state 3. Thus the language 

generated from state 0 is not invertible. 

Figure 6.4: Example for an Unambiguous but not Invertible System: State 0 is the 
initial state. 



A DEDS automaton A might be non-invertible although it is unambiguous, that is, 

unambiguity alone is not sufficient for invertibility. For example, the automaton in Figure 

6.4, where 0 is the initial state, is not ambiguous, but L is not invertible, since the event 

trajectories (pa)* and (6a)* both have the same output a* .  Following from the fact that 

R(A, xo) = X ,  one can say that L is WD-invertible iff L(A, x) is WD-invertible for each 

x E X .  

7 Perturbat ion Analysis 

In this section we are going to examine another technique for studying the behaviour of 

discrete event dynamic systems, namely, perturbation analysis (PA). The PA approach to 

analyzing DEDS is different from the analysis techniques that we discussed in the previous 

sections for the automaton model of DEDS, the existence of a consistent and pre-defined 

automata model of the system under consideration is not necessary to perform PA. For 

example, if we consider a serial production line with M stations with a queue space of 

size I(; for each station. Then the total number of states for such a system would be 

(nE,(lc; + 1))(2"), which can amount to billions for relatively small values of K; and M. 

It is quite clear that modeling such systems as finite state machines is inefficient, if not 

impossible. It should also be mentioned that the finite state machines approach is more 

suitable for answering qualitative rather than quantitative questions. 



7.1 What is Perturbation Analysis ? 

Perturbation analysis (PA) is a technique that calculates the sensitivity of performance 

measure of DEDS with respect to system parameters by analyzing its sample path. The 

object of PA is to obtain the perturbed performance from a nominal experiment or sample 

path without doing a perturbed experiment. To avoid doing more than one experiment or 

simulate a perturbed experiment is the goal of PA. 

7.2 Infinitesimal Perturbation Analysis (IPA) 

Perturbation analysis (PA) should calculate the sensitivity of a particular performance mea- 

sure T with respect to a system parameter d, in other words, we are interested in the value 

dT/dd = lim [T(O + Ad) - T(O)]/Ad 
As+o 

In order to relate the right hand side to experimental values ?, the above formula can be 

re-written as 

dT/dd = lim lirn [f(d + Ad, N)  - ?(d, N ) ] / A ~  
A8+0 N-tm 

where N is the number of the "client processes" for which the performance measure is being 

evaluated during the experiment. This can be expressed in terms of the change in the 

performance measure estimate as 

dT/dd = lim lim &!(Ad, N ) / A ~  
A8+0 N+co 

The problem at hand now would be how to calculate the change in the performance measure 

estimate by observing the unperturbed experiment. It was shown that under the assumptions 
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of small perturbation values and in the near-absence of "dramatic" changes in the system's 

behaviour due to the perturbation ( for example, a small influence on the structure of busy 

periods and a neglected amount of coalescing in the path in a GI/G/l queue) that an 

experimental estimate which converges to the true value of dTld0 as N -+ oo can be easily 

computed while the nominal (unperturbed) experiment is evolving. It should be noted that 

this gradient estimate is an infinitismal PA estimates, and for "sufficiently small" A0 the 

IPA estimate will be equal to the finite difference estimator. However, one should notice 

that the correct definition of the gradient involves letting N -+ oo first and then A0 + 0 for 

convergence to dTld0, for the IPA estimate we see that for small A0 ( A0 -+ 0 ) the IPA 

behaves like the finite difference estimator for a fixed N after that we allow a large number 

of experiments to be performed ( N --+ m ) and thus the IPA should not, in theory, converge 

to dTld0, since the order of taking limits is reversed. Fortunately, for a class of systems, 

such change of limits can be mathematically correct. 

7.3 Smoothed Perturbation Analysis (SMA) 

In some cases, the IPA technique discussed above will fail to work. One instance of this 

failure will be due to the assumption that small changes in the system parameter 0 will 

not produce coalescing of busy periods in a GI/G/l queue because of small A0. If the 

performance measure is the average number of customers served in a busy period, then 

clearly our assumption will lead to an IPA estimate of sensitivity equal to zero ! 

The idea of using conditional probabilities to develop an extension for the IPA was 

introduced to avoid some of the such failures. A conditioning variable can be introduced to 



decompose the gradient estimate expectation expression. The fact that more information is 

used in developing the conditional probability counts for the "smoother" kind of performance 

measure estimate curve that is obtainable by using this method. 

7.4 Extended Perturbation Analysis (EPA) 

For systems that can be represented by markov chains, a new approach that may overcome 

the potential inconsistency of IPA can be applied. The idea behind the extended perturbation 

analysis is the fact that the perturbed and unperturbed systems should be statistically 

evolving similarly once they enter a common state x, due to their markovian property. This 

method works by choosing a finite A0 and predicting, from the nominal path, where the 

perturbed path would have branched to a different state, say y ,  while the nominal path 

continues in, say, state x. Up to this point, an IPA-like estimator is used to  compute the 

effects of perturbation, but at this point, the computation is "frozenV.the algorithm then 

waits for the system to enter state y during the nominal path, then EPA restarts. The 

problem with EPA is the inactivity for sections in the nominal path. 

7.5 Other Perturbation Techniques 

Another Perturbation technique is finite perturbation analysis (FPA), this technique was 

introduced to overcome the IPA assumption that events do not change order. However, 

FPA considers changes in order of events to a pre-specified limit, it considers changes in the 

order of adjacent events. Originally FPA was heuristic and experimental in nature, however, 

recent research has been performed to provide more theoretical foundations for it. Other 



techniques to make IPA work include changing the system parameter under consideration 

to transform problems into "easier" versions. Using a different representation for the system 

sometime helps in performing IPA. 

8 Discussion and Future Work 

In this report, we have discussed some basic notions related to discrete event dynamic sys- 

tems. We emphasized upon the automaton model of a DEDS and described some ideas 

regarding controlling and observing the behaviour of such systems. We also mentioned 

perturbation analysis as a performance measure analysis method. As a future extension, 

more powerful models could be used instead of finite automata, for example, Grammars, 

Pushdown Automata, Turing Machines and/or p-recursive functions. Applications related 

to fields other than communication and manufacturing systems could be exploited. Many 

dynamic tasks can be modeled as DEDS and thus they can be analyzed and controlled 

efficiently using the ideas discussed in this report. 
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