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Abstract

In this paper we describe an efficient system for recovering the 3-D motion and structure of visual
systems from an evolving image sequence. The technique utilizes the image flow velocities in
order to recover the 3-D parameters. We develop a real-time algorithm for recovering the 2-D
flow vectors on the image plane with sub-pixel accuracy. The flow estimates are then examined
for the possibilities for errors, mistakes and uncertainties in the visual system. Uncertainty
models are developed for the sensor and for the image processing techniques being used. Further
filtering and a rejection mechanism are then developed to discard unrealistic flow estimates. The
2-D flow models are then converted into 3-D uncertainty models for motion and structure. We
further develop an algorithm which iteratively improves the 3-D solution given two successive
image frames and then discuss a multi-frame algorithm that improves the solution progressively
by using a large number of image frames.

1 Introduction
The problem of recovering scene structure and the camera motion relative to the scene has been one
of the key problems in computer vision. Many techniques have been developed for the estimation of
structure and motion parameters [4,11,20,21,27,28] and a number of methods have been developed
to estimate the 2-D image motion [1,6,12,14]. In this work we develop a system for shape and
motion perception that utilizes the image motion velocities in order to compute the 3-D parametric
uncertainty models for the world structure and motion. We start by addressing the problem of
recovering the 2-D flow vectors with uncertainty in real time. Then, we use those velocities to
compute the world uncertainty.

The work examines closely the possibilities for errors, mistakes and uncertainties in the visual system.
We divide the problem into four major levels for developing uncertainty models. The sensor level
models deals with the problems in mapping 3-D features to pixel coordinates and the errors incurred
in that process. We identify these uncertainties and suggest a framework for modeling them. The
next level is the extraction strategy level, in which we develop models for the possibility of errors in
the low-level image processing modules used for identifying features that are to be used in computing
the 2-D evolution of the scene under consideration and computing the image flow. In the third level,
we utilize the known geometric and mechanical properties to reject unrealistic estimates for 2-D
movements that might have been obtained from the first two levels.

After having obtained 2-D models for the evolution of the hand/object relationship, we transform the
2-D uncertainty models into 3-D uncertainty models for the structure and motion of the entire scene.
The fourth level uses the equations that govern the 2-D to 3-D relationship to perform the conversion.
We also develop algorithms that could be used to solve the transformation with uncertainty efficiently
and in real time. An algorithm is developed that improves the solution iteratively from a set of two
image frames. Then, we discuss a system that improves the solution progressively by using a large
number of image frames. A number of other closed-form solution algorithms are also discussed.
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2 Recovering Image Motion
Many techniques were developed to estimate the optic flow (the 2-D image motion vectors) [1,6,12,14,
16,30], we propose an algorithm for calculating the image flow and then we discuss a simpler version
of the same algorithm for real time detection of the 2-D motion vectors. The image flow detection
technique we use is based on the sum-of-squared-differences optic flow. We consider two images, 1
and 2. For every pixel (x, y) in image 1 we consider a pixel area N surrounding it and search a
neighboring area S to seek a corresponding area in image 2 such that the sum of squared differences
in the pixel gray levels is minimal as follows

SSD(i, ) = mm [E(x + zx, y + L\y) — E(i + x, + i\y)]2
x,yESix4yEN

The image flow vector of pixel (x, y) then points from the center of N in the first image to the
center of the best match in the second image. The search area S should be restricted for practicality
measures. In the case of multiple best matches, we can use the one which implies minimum motion,
as a heuristic favoring small movements. It should be noted that the accuracy of direction and
magnitude of the optic flow determination depends on the sizes of the neighborhoods N and S.

There are three basic problems with this simple approach, one is that the sum of squared differences
will be near zero for all directions wherever the graylevel is relatively uniform, the second is that it
suffers from the so-called "aperture problem" even if there is a significant graylevel variation. To
illustrate this point, consider a vertical edge moving to the right by one pixel distance, and suppose
the N window size is 3 x 3 pixels and the S window size is 5 x 5 pixels, the squared-differences
at an edge point reaches its maximum for three directions as indicated by the vectors (in pixel
displacements); (1, 0), (1, —1) and (1, 1). The third problem is that the scheme will only determine
the displacement to pixel accuracy.
We solve the first problem by estimating the motion only at the pixels (as determined by the two-
dimensional segmentation scheme) where the intensity changes significantly. The Sobel edge detector
is applied to the first image to estimate the edge magnitude M(x, y) and direction D(x, y) for every
pixel

M(x,y) /E + E

D(x,y) tan1 ()
where E and E are the partial derivatives of the first image with respect to x and y, respectively.
The edge direction and magnitude is discretized depending on the size of the windows N and S.
The motion is then estimated at only the pixels where the gradient magnitude exceeds the input
threshold value. Motion ambiguity due to the aperture problem can be solved by estimating only
the normal flow vector. It is well known that the motion along the direction of intensity gradient
only can be recovered. Then we evaluate the SSD functions at only those locations that lie on the
gradient directions and choose the one corresponding to the minimal SSD, if more than one minimal
SSD exist we can choose the one corresponding to the smallest movement, as described above. The
full flow vector can then be estimated by using the following equation which relates the normal flow
vector v to the full flow vector i.

vn = v.n
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This method works under the assumption that the image motion is locally constant. Solving the
over-determined linear system will result in a solution for the full flow. The least square error of the
system can help us to decide whether the assumption is a reasonably valid one. On the other hand,
full flow determination can be performed for small clusters of points in the image and a number of
full flow estimates is then used for 3-D recovery.

To obtain sub-pixel accuracy, we can fit a one-dimensional curve along the direction of the gradient
for all the SSD values obtained. A polynomial of the degree of the number of points used along the
gradient can be used to obtain the best precision. However, for an S window of size '7 x 7 pixels or
less and an N window of size 3 x3 or so, a quadratic function can be used for efficiency and to avoid
optimizational instabilities for higher order polynomials. The subpixel optimum can be obtained
by finding the minimum of the function used and using the displacement at which it occurred as
the image flow estimate. To avoid probable discontinuities in the SSD values, the image could be
smoothed first using a gaussian with a small variance.

A simpler version of the above algorithm can be implemented in real-time using a multi-resolution
approach [30]. We can restrict the window size of N to 3 x 3 and that of S to 5 x 5, and perform
the algorithm on different levels of the gaussian image pyramid. A gaussian pyramid is constructed
by the successive applications of gaussian low-pass filtering and decimation by half. The pyramid
processor, PVM-1 is capable of producing complete gaussian pyramid from a 256 by 256 image in
one video frame (1o a second). Maxvideo boards can be used for the simultaneous estimation of
image flow at all the levels of the pyramid for all the pixels. Image flow of 1 pixel at the second
level would correspond to 2 pixels in the original image, 1 pixel displacement at the third level would
correspond to 4 pixels in the original image, and so on. The level with the smallest least square
fitting error of the normal flow can be chosen.to get the full flow and the motion vector is scaled
accordingly. This method is crude in the sense that it only allow image flow values of 1,2,4 or 8 pixel
displacement at each pixel, but it can be used for detecting fast movements.

By either using a flow recovery algorithm or a feature identification and tracking algorithm, we end
up having a set of values for 2-D displacements of a number of pixels. The problem is how can
we model the uncertainty in those 2-D estimates, which are to be used later for 3-D parameter
recovery. For example, if the estimate is - for a specific 3-D feature - that pixel (xi, yj) has moved
to pixel (Xm, Yn), then the problem reduces to finding space probability distributions for the four
indices. The sensor acquisition procedure (grabbing images) and uncertainty in image processing
mechanisms for determining features are factors that should be taken into consideration when we
compute the uncertainty in the optic flow.

3 Sensor Uncertainties
In this section and the next two sections we develop and discuss modeling the uncertainties in the
recovered 2-D displacement vectors. There are many sources oferrors and ways to model uncertainties
in image processing [29]. As mentioned in the section describing techniques for recovering the image
flow, the uncertainty in the recovered values results from sensor uncertainties and noise and from the
image processing techniques used to extract and track features. When dealing with measurements of
any sort, it is always the case that the measurements are accompanied by some error. Mistakes also
occur, where mistakes are not large errors but failures of a system component or more. A description
of errors, mistakes and modeling them can be found in [2,3].

In this section we discuss errors in image formation. The camera is used to grab and register images
of the scene, so we need to know errors in mapping from the 3-D world features to the 2-D domain
which we use in forming 3-D hypothesis about the scene under supervision. The accuracy, precision
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and modeling uncertainty of the camera as our sensor is an important issue and the first step towards
forming a full uncertainty model for recovering the 3-D models.

As a lot of the image processing algorithms compute derivatives of the intensity function, noise in the
image will be amplified and propagated throughout the imaging process. The goal of this treatment
is to find a distribution for the uncertainty of mapping a specific 3-D feature into a specific pixel
value. In other words, if the feature 2-D position was discovered to be (i,j), then the goal is to find
a 2-D distribution for i and j, assuming that there is no uncertainty in the technique used to extract
the 2-D feature, the technique's uncertainty will be discussed in the next section. The end product of
modeling the sensor uncertainty is to be able to say a statement like : "The 3-D feature F is located
in the 2-D pixel position (i,j) with probability p or located in the 2-D pixel position (i,j + 1) with
probability P2 or . .. . given that the registered location is (1, m), such that Pi + P2 + + p, = 1,
and , error in the 2-D feature recovery mechanism."

3.1 Image Formation Errors
The errors in the image formation process are basically of two different kinds. The first type is a
spatial error, the other type is a temporal error. The spatial error due to the noise characteristics of
a CCD transducer can be due to many reasons, among which are dark signatures and illumination
signatures. The technique to be used is to take a large number of images, we can denote the image
intensity function as a 3-D function I(u, v, t), with spatial arguments u and v and temporal argument
t. The sample mean of the image intensities over N time samples can be denoted by I(u, v).

7(u,v) = I(u,v,t)
The spatial variance in a 5 x 5 neighborhood of the means is computed by:

s2(u, v) = i2t2(7(u + i, V + j) l(u, v))2

The dark signature of the camera can be determined by computing l(u, v) of each pixel with the
lens cap on. It will be found that a small number of pixels will have non-zero mean and non-
zero variance. The specific pixel locations are blemished and should be registered. The uniform
illumination is computed by placing a nylon diffuser over the lens and computing the mean and
variance. It will be noticed that due to digitizing the CCD array into a pixel array of different size,
and the difference in sample rates between the digitizer and camera, the border of the image will
have different mean and variance from the interior of the image. Some "stuck" pixels at the location
of the blemished pixels will also be noted. The contrast transfer function will also be noted to vary
at different distances from the center of the lens.

Temporal noise characteristics can also be identified by taking a number of experiments and notice
the time dependency of the pixels intensity function. In our treatment and for our modeling purposes
we concentrate on the spatial distribution of noise and its effect on finding the 2-D uncertainty in
recovering a 3-D feature location in the pixel array.

3.2 Calibration and Modeling Uncertainties
Methods to compute the translation and rotation of the camera with respect to its coordinates, as
well as the camera parameters, such as the focal length, radial distortion coefficients, scale factor and
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the image origin, have been developed and discussed in the literature [5,15,24]. In this section we use
a static camera calibration technique to model the uncertainty in 3-D to 2-D feature locations. In
particular we use the sequence of steps used to transform from 3-D world coordinates to computer
pixel coordinates in order to recover the pixel uncertainties, due to the sensor noise characteristics
described previously.

A sequence of computational steps can be used for a coplanar set of points in order to obtain the
rotation and translation matrices, in addition to the camera parameters. The input to the system
are two sets of coordinates, (X1, Y1), which are the computer 2-D pixel image coordinates in frame
memory and (x, Yw,z), which are the 3-D world coordinates of a set of coplanar points impressed
on a piece of paper with known inter-point distances. A discussion of the exact mathematical
formulation of the inter—step computations to find all the parameters can be found in [5].

Our approach is to treat the whole camera system as a black box and make input/output measure-
ments and develop a model of its parametric behaviour. The next step is to utilize the recovered
camera parameters and the number of 3-D points which we created in order to formulate a distribu-
tion of the 2-D uncertainty.

The strategy used to find the 2-D uncertainty in the features 2-D representation is to utilize the
recovered camera parameters and the 3-D world coordinates (x, Yw, z) of the known set of points
and compute the corresponding pixel coordinates, for points distributed throughout the image plane
a number of times, find the actual feature pixel coordinates and construct 2-D histograms for the
displacements from the recovered coordinates for the experiments performed. The number of the
experiments giving a certain displacement error would be the z axis of this histogram, while the
x and y axis are the displacement error. Different histograms can be used for different 2-D pixel
positions distributed throughout the image plane. The three dimensional histogram functions are
then normalized such that the volume under the histogram is equal to 1 unit volume and the resulting
normalized function is used as the distribution of pixel displacement error, thus modeling the sensor
uncertainty. The black box approach is thus used to model errors in a statistical sense.

4 Image Processing Uncertainties
In this section we describe a technique by which developing uncertainties due to the image pro-
cessing strategy can be modeled. In addition, we end the discussion by combining both the sensor
uncertainties developed in the previous section and the models developed in this section to generate
distribution models for the uncertainty in estimating the 2-D motion vectors. These models are to
be used for determining the full uncertainty in recovering the 3-D structure and motion.

We start by identifying some basic measures and ideas that are used frequently to recognize the
behaviour of basic image processing algorithms and then proceed to describe the technique we use
in order to compute the error model in locating certain features from their 2-D representation in the
pixel array. We concentrate on modeling the error incurred in extracting edges, as edge extraction
is a very popular mechanism that is used for both identifying feature points and also for computing
2-D contours of the object under supervision. When we discussed flow recovery techniques before, it
was discussed in details that the optic flow recovery algorithm using local matching works well for
the intensity boundaries and not for the inside regions.

4.1 Edge Extraction Uncertainties
Edge extraction strategies and methods to evaluate their performance qualitatively and quantatively
have been presented and discussed in the literature [8,10,17,19]. There are many types of edges,
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ideal, ramp and noisy edges are only three of them. Different curvatures in the edges aJso constitute
another dimension to be taken into consideration when it comes to asserting the types of edges that
exist.

The goal of developing the error models for edge extraction to to be able to say a statement like
"Given that the 2-D feature recovered using the edge recovery S is in pixel position (x, y), then there
is a probability that the feature was originally at pixel position (x + 1, y) with probability P1 or
etc. due to the noise in the pixel image, such that P1 + P2 + ..+ p = 1." The problem is to find
the probabilities.
It should be obvious that there may be different types of noises and also different levels of those types
that might vary at different locations in the sensor image plane. This adds to the different models
that we might have to construct. Our approach is to use ideal, that is, synthesized edges of different
types, locations and also orientations in image frames then corrupt them with different kinds and
levels of noises. We know the ideal edge points from the ideal image, for which we shall use the edge
detector that is to be used in the experiment. The corrupted images will then be operated upon by
the detector and the edge points located. The edge points will differ from the ideal image edge points.
The problem reduces to finding corresponding edge points in corrupted and ideal images then finding
the error along a large number of edge points. A 2-D histogram is then constructed for the number
of points with specific displacement errors from the ideal point. The volume of the histogram is then
normalized to be equal to 1, the resulting 3-D function is the 2-D probability density function of the
error of displacements.

4.2 Computing 2D Motion Uncertainty
In this section we describe how to combine sensor and strategy error models to compute models for
the recovered image flow values. To simplify the idea, let's assume that we have recovered a specific
feature point (x1 ,Yi) in an image grabbed at time instant t and the corresponding point (x2, Y2)
at time t + 1. The problem is to figure out the distribution of v. As an example, to explain the
procedure, let's assume that from the 3-D sensor distribution we have have computed the marginal
density function of the x coordinate of x1 in the point:

fx(x) =
JRfx,Y(x,Y)dY

where R is all the possible y values within the sensor uncertainty model.
The same process is applied for the strategy distribution and another function is recovered. To
simplify things, lets assume that for both distributions there is an equal probability equal to that
the x coordinate is the same, or shifted one position to the left or the right. Combining the spatial
information of both distributions as a convolution process would produce a triangle-like distribution,
which is the error probability density function of having the 3-D feature x 2-D coordinate in the
recovered image 2-D x position. Further more, assume that x2 distribution is the same.

The problem reduces to finding the distribution of the optic flow x component, using these two
combined distributions. As an example, if x1 = 10 and x2 = 22, then all probability statements can
be easily computed, a set of some of these probability statement is shown

P(v = 8)=P((xi = 12) A (x2 = 20))= x

P(v = 9)=P(((xi = 12) A (x2 = 21)) V ((x1 = 11) A (x2 = 20)))=( x ) + ( x

P(v = lOixi = 10)P(XiiOAX22O)ii1
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Consequently, all distributions and expected values can be computed from the combination of the
sensor level and strategy level uncertainty formulation. Those flow models are then passed to the
higher levels for 3-D recovery. In the next section we discuss a method for refining the measured 2-D
motion vectors and we then proceed to formulate the 3-D uncertainty modeling of parameters.

5 Refining Image Motion
In this section we describe a method to refine the recovered 2-D motion vectors on the image plane.
Having obtained from the sensor and extraction strategy uncertainty levels distribution estimates
for the image flow of the different features, we now try to eliminate the unrealistic ones. Faulty
estimates can results from noise, errors or mistakes in the sensor acquisition process and/or visual
problems like occlusion, modeling the uncertainties in the previous two levels may still leave room
for such anomalies.

We can assume that the features to be tracked lie on a planar surface or that segmenting the objects
as polyhedra is simple, although the modification would be very simple to allow for arbitrary 3-D
positions of the feature distribution. Since we might know a-priori some information about the
mechanical capabilities and limitations and geometric properties of the system under observation,
also about the rate of visual sampling for the camera, since we actually control that, we might be
able to assert some limits on some of the visual parameters in our system.

We know equations that govern the behaviour of the image flow as a function of the structure and
3-D motion parameters, as follows

vx = (1 — px — qy) — ) + [xy _ (i + x2) + yz]

vy = (1 — px — qy) (y — ) + [(i + 2)x — xyy — xz]
Which are second degree functions in x and y in three dimensions, v = fi(x,y) and f2(x,y).
In addition, we know upper and lower limits on the coefficients p, q, V, Vy, V, x, y, 1z and
zo, as we might know some of the mechanical abilities of the system being observed. So the problem
reduces to constructing the three dimensional envelopes for v and v, as the worst case estimates for
the flow velocity and rejecting any measured values that lie outside that envelope.

As an example, we write the equation governing the maximum v value in the first quadrant of the
S — y plane (x,y).

I fVx3 \ fV1 max(piVx1,p3Vx3)\ fmax(qVx1,q5Vx3)
VX,nax _ z fI3) + z ) x + ( + z1) Y

Os 0s O

+ — min(qiVz,q8Vz3" x — (min(piVz,p3Vz1) + L'\ 2'f fzos I fzos 1)
where the subscripts .s and 1 denote lower and upper limits, respectively. At first sight the problem
of determining the maximum value of v seems to be a constrained non linear optimization problem,
which is true, however, assuming that the upper and lower limits of the coefficients are equal in
magnitude and opposite in directions (except for Z0, which is used only as Z) makes the input to
the max and mm functions in the above equations always equal and thus providing one more degree
of freedom in choosing the parameters and making the choice consistent throughout the equation.
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Thus the problem becomes simply to write eight equations as the above one for each of v and vi,,
to draw the function in each of the four quadrants for maximum and minimum envelopes. It should
be noted that the maximum absolute possible value of the image flow is minimal at the origin of the
camera image plane and increases quadratically as the distance increases from the center.

6 Recovering 3-D Parameters
In this section we describe different techniques for recovering the 3-D parameters. In particular,
we utilize the refined 2-D motion distributions that were computed in the previous levels in order
to achieve a robust estimation of the three dimensional motion and structure vectors of the scene
under observation. We develop some techniques for finding estimates of the required parameters and
discuss mathematical formulations that will enable us to determine the 3-D parametric distributions.

The problem of recovering scene structure and the camera motion relative to the scene has been one
of the key problems in computer vision. Many techniques have been developed for the estimation
of structure and motion parameters ( Tsai and Huang [23], Weng et al. [28] etc.). A lot of existing
algorithms depend on evaluating the motion parameters between two successive frames in a sequence.
However, recent research on structure and motion has been directed towards using a large number
of frames to exploit the history of parametric evolution for a more accurate estimation and noise
reduction ( Uliman [26], Grzywacz and Hildreth[11] etc.)
Next, we describe a method for recovering the 3-D motion and orientation of the planar surface
from an evolving image sequence. The algorithm utilizes the image flow velocities in order to recover
the 3-D parameters. First, we develop an algorithm which iteratively improves the solution given
two successive image frames. The solution space is divided into three subspaces - the translational
motion, the rotational motion and the surface slope. The solution of each subspace is updated by
using the current solution of the other two subspaces. The updating process continues until the
motion parameters converge, or until no significant improvement is achieved.

Second, we further improve the solution progressively by using a large number of image frames and
the ordinary differential equations which describe the evolution of motion and structure over time.
Our algorithm uses a weighted average of the expected parameters and the calculated parameters
using the 2-frame iterative algorithm as current solution and continues in the same way till the end
of the frame sequence. Thus it keeps track of the past history of parametric evolution.

The solution is further improved by exploiting the temporal coherence of 3-D motion. We develop
the ordinary differential equations which describe the evolution of motion and structure in terms of
the current motion/structure and the measurements (the 2-D motion vectors) in the image plane. As
an initial step we assume that the 3-D motion is piecewise uniform in time. The extended Kalman
filter can then be used to update the solution of the differential equations.

6.1 A 3-D Recovery Algorithm
One can model an arbitrary 3-D motion in terms of stationary—scene/moving-viewer. The optical
flow at the image plane can be related to the 3-D world as indicated by the following pair of equations
( In case of a planar surface), for each point (x, y) in the image plane

v = (1 — px — qy) — + [xyx — (i + x2) y + yz]
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vy = (1 — px — qy) (y — ) + [(i + 2) czx — xyczy —

where v and v are the image velocity at image location (x, y), (V , Vy ,V) and (Qx, Iy , 1z)
are the translational and rotational velocity vectors of the observer, p and q are the planar surface
orientations. The situation becomes, for each point, two equations in eight unknowns, namely,
the scaled translational velocities V/Zo, Vy/Z0 and V/Z0, the rotational velocities IZx,Iy and
czz and the orientations p and q. Differential methods could be used to solve those equations by
differentiating the flow field and by using approximate methods to find the flow field derivatives.
The existing methods for computing the derivatives of the flow field usually do not produce accurate
results. Our algorithm uses a discrete method instead, i.e, the vectors at a number of points in the
plane is determined and the problem reduces to solving a system of nonlinear equations.

It should be noticed that the resulting system of equations is nonlinear, however, it has some linear
properties. The rotational part, for example, is totally linear, also, for any combination of two spaces
among the rotational, translational and slope spaces, the system becomes linear. For the system of
equations to be consistent, we need the flow estimates for at least four points, in which case there
will be eight equations in eight unknowns.

6.1.1 Two-Frame Algorithm
The algorithm takes as input the estimate of the flow vectors at a number of points � 4 obtained
from motion between two images. It iterates updating the solution of each subspace by using the
solution of the other two subspaces. Each update involves solving a linear system, thereby it requires
to solve three linear systems to complete a single iteration. This process continues until the solution
converges, or until no significant improvement is made. The algorithm proceeds as follows

1. Set p, q = 0;
input the initial estimate for rotation
Solve the linear system for translation;

2. Use the translation and rotation from step 1
Solve the linear system for the slope

3. Set i=1;
While (i � Max. Iterations) and (no convergence) Do

Solve for the rotations using latest estimates of translations, p and q;
Solve for the translations using latest estimates of rotations, p and q;
Solve for p, q using latest estimates of translations and rotations;

end While

6.1.2 Complexity Analysis
As we mentioned earlier, one should notice in the equations relating the flow velocities with the slope,
rotational and translational velocities that they are "quasi-linear" , if one can say so. The equations
exhibit some linear properties. This suggests that apurely iterative technique for solving non-linear
equations might not be an excellent choice, since, the variables are linearly related in some way. To
think of a way of "inverting" the relations might be a good start, although to do that without a
framework based on iterating and gravitating towards a solution is not a good idea.

This makes one think of applying a method which converges faster than a purely iterative scheme like
Newton's method. However, the complexity of Newton's method is determined by the complexity
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of computing the inverse Jacobian, which is of an order of N3, or N281 multiplications as the lower
bound using Strassen's technique. In our case, since we have at least 8 equations in 8 unknowns, the
complexity is of order 8 = 512 multiplications at every iteration, and the method does not make
any use of the fact that the set of equations at hand exhibits some linear properties.

The algorithm proposed, on the other hand, makes very good use of the fact that there are some
linearity in the equations, by inverting the set of relations for each subspace at every iteration. The
complexity at every iteration is of the order of the complexity of computing the pseudo-inverse which
is of the order of ( 33 33 2 ) multiplications at each iteration, where the first 3 comes from solving
the system for the rotational variables, the second 3 is for the translations, the last 2 is for p and
q. This is equal to 62 multiplications at every iteration, which is significantly less than the 512
multiplications in a method like Newton's for example. It was noticed that the algorithm converged
to solution in a very small number of iterations for most experiments we have conducted so far. The
maximum number of iterations was 6.

Using the latest solution obtained from the two-frame analysis as the initial condition for the next
two-frame problem in the image sequence would further decrease the complexity, as the next set of
parameters would, most probably, be close in values to the current parameters, thus the number of
iterations needed to converge to the new solution would decrease significantly.

6.1.3 Observations

S The algorithm is not sensitive to the initial condition of the orientation parameters. The plane
is simply assumed to be a frontal one at the beginning. The slope parameters evolves with
iterations.

. The algorithm is sensitive to input noise just like other existing algorithms, some experiments
shows the sensitivity with respect to the change of viewing angle. Similarly, the algorithm
performs better for a large number of points that are evenly distributed throughout the planar
surface, than it does for clustered, smaller number of image points.

S It is proven that there exists dual solutions for such systems. However, ifour method gravitates
towards a "fixed point" in the solution space we can find the other explicitly in terms of the
first one from the relations given by Waxman and Ullman [27].

6.1.4 Multi-Frame Algorithm
The ordinary differential equations that describe the evolution of motion and structure parameters
are used to find the expression for the expected parameter change in terms of the previous parameter
estimates. The expected change and the old estimates are then used to predict the current motion
and structure parameters.

At time instant t, the planar surface equation is described by

Z=pX+qY+Z0
To compute the change in the structure parameters during the time interval dt, we differentiate the
above equation to get

dZ dX dp dY dq dZ0
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The time derivatives of (X, Y, Z) in the above expression are given by the three components of the
vector —(V + Z x R) that represent the relative motion of the object with respect to the camera.
Substituting these components for the derivatives and the expression pX + qY + Z0 for Z we can get
the exact differentials for the slopes and Z0 as

dZ0= Z0[(1y+Vx)p_(1x—Vy)q—Vz]dt
dp = [p(Iyp — Qxq) + (Iy + IZzq)] dt
dq = [q(fZyp — IZxq) — (1x + IzP)] dt

Using the above relations, we can compute the new structure parameters at time t + dt as

ji=p+dp,4=q+dq and Z0=Z0+dZ0
Thus the slope parameters evolve at time t + d as follows

F ji .j [ p czyp — xq cz cy dt
1.4]

— [qj I —clz 1Zyp—1xq —Ixj

The new translational velocity V at time t + dt can be found in the absence of accelerations from

V=V+Vx fZdt

Dividing by we get the new expected scaled translational velocity components at time t+ dt
as follows

T;rx V -s 1z Iy
l;Ty = Vy + -Iz -S cx Vy dt,
1:Tz V cy -clx -S V

where s is expressed as follows

S = (y + Vx)p— (Ix — Vy)q —V
The expected rotational parameters at time t + dt remain equal to their values at time t since

and thus

( =

Our first multi-frame algorithm uses a weighted average ofthe expected parameters at time t+dt from
the above equations and the calculated parameters using the two-frame iterative algorithm as the so-
lution at time t+dt, and continues in the same way until the end ofthe frame sequence. Thus it keeps
track of the past history of parametric evolution. We further develop the first multi-frame algorithm
to exploit the temporal coherence of 3-D motion. We develop the ordinary differential equations
which describe the evolution of motion and structure in terms of the current motion/structure and
the two-dimensional flow vectors in the image plane. We assume that the 3-D motion is piecewise
uniform in time, i.e, 1� = V = 0. We then use the equations expressing the time derivative of the
slope derived above and the fact that the derivative of the rotational velocities is zero and develop
the following expressions for the scaled translational velocities and the depth Z0
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L=_VX+,4=_VY+a and=-V-
—V — PVx qvy

The extended Kalman filter can then be used to update the solution of the differential equations.
Parallel implementations could be designed for the system, thus solving for the structure - motion
parameters for each surface separately. In fact, solving the linear system at each iteration could also
be parallelized.

6.2 Other Algorithms
There are other non-iterative techniques for recovering the 3-D parameters resulting from 2-D motion
between two frames. The methods that will be mentioned here rely on specific assumption regarding
the scene's geometry and/or world actions. Assuming that the actual relations between feature
points that lie on some of the scene's planar surfaces are well defined than a closed form solution
for the structure parameters and depth can be estimated by using a method like the one described
by Fischler and Bolles [9]. The motion parameters can then be easily recovered by solving a linear
system in six parameters.

It should be noticed that we try to use alternative methods in order to solve linear equations, the
motive behind that is the fact that linear systems can be solved in a pseudo-real time framework
for a relatively small number of feature points and in addition a closed form solution always results.
Another idea is to assume that some surfaces are frontal at the time of capturing the frame to be
processed with the previous one, thus p and q are equal to zero, and the problem reduces to solving
a linear system in six parameters for the motion parameters, while the depth is easily computed by
knowing the 3-D distance between any two feature points.

The assumption here being that the camera always locates itself to a position in which some object
surfaces are frontal with respect to the camera image plane, and that the movements while the
camera is moving and during computations is negligible. Other formulations may attempt to find
pseudo-close form solution of the non-linear second order system and other assumptions, like the
absence of rotational and/or translational motion reduces the complexity significantly.

6.3 Recovering 3-D Uncertainties
Having discussed methods for computing the three dimensional motion vectors and structure param-
eters between two image frames, we now use the same formulations described earlier for 3-D recovery
but using 2-D error distributions as estimates for motion and/or feature coordinates in order to
compute 3-D uncertainty distributions for the real world motion vectors and structure instead of
singular values for the world parameters.

As an example to illustrate the idea, let's assume a linear system of equations as follows

x + 3y =

2x + y =
The solution of this system is very easily obtained as

3 1x = —
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2 1
y = zi —

-z2
That is, a linear combination of the right hand side parameters. If the parameters Zi and Z2 were
random variables of known probability distributions instead of constants, then the problem becomes
slightly harder, which is, to find the linear combination of those random variables as another random
variable. The obvious way of doing this would be to use convolutions and the formula:

P1+2(y) =P1,2(x,y — x)
R

for the sum of two random variables X1 , X2 for any real number y and/or the formula for linear
combinations over the region R, which is for all x such that P1 ,x2 (x, y —x) > 0. Using the moment
generating function or the characteristic function seems also to be a very attractive alternative. The
moment generating function M of a linear combination of random variables, for example Xi , X2 can
be written as

MaX1+bX2+c(t) = et (Mx1(at)Mx2(bt))

for independent random variables X1 , X2. That is, the problem of solving linear systems on the form
Ax = b, where b is a vector of random variables, may be reduced to finding closed form solutions for
x in terms of the random parameters (using any elimination technique) and then manipulating the
results and finding different expectations using moment generating or characteristic functions.

The solutions we suggest to this problem offinding the random variable solution ofthe 3-D parameters
utilize the techniques we described in the previous two subsections. Using either the two-frame
iterative technique or the closed form algorithms, it should be noticed that the problem reduces to
either solving multi-linear systems or a single one. In that case, using elimination and characteristic
functions for computing the required expectations and distributions is straight forward.

7 Conclusions

\\Te have suggested algorithms for the quick estimation of the 3-D uncertainties in the structure and
motion of a moving scene. Our system utilizes the image flow velocities in order to recover the
motion and structure estimates of the uncertainty in the 3-D world parameters. Sensor and strategy
uncertainties are used and propagated in order to recover the 3-D distributions. The system can be
used for a variety of application ranging from simple recognition tasks to tracking objects in a robust
and stable manner. It allows for error recovery, as the uncertainty modelling presents estimates for
the correctness of the recovered parameters.
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