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Abstract 

In this paper, we discuss the problem of 

computing the reachable workspace for re- 

dundant manipulators. Algorithms that com- 

pute workspace boundary points by using 

screw theory are presented. These algorithms 

cannot distinguish holes and voids that are 

buried within the reachable workspace. We 

present an algorithm that utilizes inverse 

kinematics in order to detect the unreachable 

regions (holes and voids) within the reachable 

workspace, 

1 Introduction 
The reachable workspace of a manipulator is 

the volume or space encompassing all points 

that a reference point P on the end effector 

traces as all the joints move through their re- 

spective ranges of motion [4, 91. The prob- 

lem of computing the workspace for a re- 

dundant manipulator has applications in a 

variety of fields such as robotics, computer 

aided design, and computer graphics. Al- 

though the workspace problem has long been 

on the agenda of researchers in robotics, they 

have not formulated a satisfactory and gen- 

eral solution. A workspace is said to have a 

hole if there exist at least one straight line 

which is surrounded by the workspace yet 

without making contact with it [14, 61. A 

workspace is said to have a void if there exist 

a closed region R, buried within the reach- 

able workspace, such that all points inside the 

bounding surface of R are not reached by the 

manipulator [14, 61. 

In the next two sections, we describe al- 

gorithms that use screw theory and inverse 

kinematics in order to compute the reachable 

workspace. Each class of these algorithms has 

advantages and disadvantages. Instead of de- 

bating the merits of these algorithms, we in- 

tegrate them as described in section four. 

2 Algorithms based on 

screw theory 

Kumar [4, 51 did pioneering work in com- 

puting workspace boundary points by using 

screw theory. He used the fact that the ma- 

nipulator is in singular configuration when 

the end effector reference point is positioned 

at a workspace boundary point. This config- 

uration occurs when all active1 joint axes are 

all reciprocal to a zero pitch wrench (force) 

‘A joint is termed inactive when it reaches one of 

its limits. 
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axis’ [5, 12, 13, 111. This is evident be- 

cause the wrench will create moments about 

the joint axes that are not reciprocal to the 

wrench axis if the reciprocal condition is not 

satisfied. Accordingly, these moments cause 

those joints to move until the reciprocal con- 

dition is satisfied or until they reach one of 

their limits. For a revolute joint (screw axis 

of zero pitch), the reciprocal condition is sat- 

isfied when the wrench axis has either finite or 

infinite intersection with the joint axis [5,11]. 

For a prismatic joint, the reciprocal condition 

is met when the wrench axis is perpendicular 

to the joint axis 1111. 

A wrench of zero pitch (force) is applied to 

a reference point on the end effector in or- 

der to compute a workspace boundary point 

in the force direction. Then, the direction of 

the force is changed to sweep either the en- 

tire workspace boundary. A closed form algo- 

rithm that computes the joint variables satis- 

fying the above conditions is used. The algo- 

rithm generates 2+* different surfaces which 

bound different workspaces for a manipula- 

tor of. n joints. These different surfaces re- 

sult from the fact that each joint can assume 

one of two positions under the force appli- 

cation. One of these positions corresponds 

to a stable equilibrium while the other cor- 

responds to unstable equilibrium. These two 

positions can be distinguished by computing 

the work done by the applied force to the end 

21n screw theory, two screw axes are called recip- 

rocal to each other when the wrench applied about 

one screw axis does no work about the other screw 

axis. 

effector when the joint is disturbed from its 

equilibrium position. If the work done is pos- 

itive, the disturbed joint is in unstable equi- 

librium since the force continues doing work 

until the joint takes up a stable equilibrium 

position. On the other hand, if the work done 

is negative, the disturbed joint is in equilib- 

rium position since the applied force causes 

the joint to return to its initial position when 

the disturbing torque is removed. Hence, this 

type of algorithms traces re-entrant surfaces 

as well as the boundary surfaces. These re- 

entrant surfaces are non-crossable when the 

manipulator is positioned in the configuration 

that traces those surfaces, i.e., they represent 

barriers inside the workspace and affect the 

manipulator’s controllability. The following 

example illustrates this approach. 

Example 

Consider a planar manipulator that has three 
ideal revolute joints3 with parallel axes as 

shown in figure 1. A force is applied to a ref- 

erence point in the end effector. The manip- 

ulator will be in its extended positions when 

the force line of action intersects all joints’ 

axes. The contours which bound envelope of 

the workspace as well as the interior surfaces 

result from rotating these extended positions 

about the first joint axis. Figure 2 illustrates 

the four different workspaces. The workspace 

envelope results when all joints are in equilib- 

rium positions. 

3We have used a three degree of freedom planar 

manipulator since it is simple to illustrate and its 

behavior is similar to a six degrees of freedom manip- 

ulator in space. 
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Finally, this class of algorithms provide sur- negative potential function P. This function 

face classification based on the stability of represents the difference between the current 

different joints under the force application; position and orientation of the end effector 

however, it cannot detect holes and voids in and the goa14. This function has the value 

the workspace. The ability to distinguish zero if the goal is achieved. If the goal lies 

holes and voids that are buried inside the outside the workspace, the procedure will re- 

workspace can be achieved by using inverse turn the joint angle values that will position 

kinematics as described in section four. the end effector at the closest point to the 

goal which lies on the reachable workspace 

3 Algorithms based on 
envelope. The potential function P is a func- 

tion of the position and orientation of the end 

inverse kinematics effector. 

The inverse kinematics problem involves com- P = W(Q), VI(&), Q(Q) 
puting the set of joint variables that would 

place the end effector in a prespecified posi- 
where: 

tion and orientation. The inverse kinemat- 
r: is the position vector. 

its is not as simple as the forward kinemat- Vl, v2: are two unit vectors that determine 

its. Because the kinematic equations are non- 
the end effector orientation. 

linear, their solutions are not always easy or 
Q: is the vector of the joint angles. 

even possible in closed form. Also, the ques- 

tions of existence of a solution, and of multi- 
The joint limits qimin,qirnaE, the lower and 

ple solutions arise. The existence or nonex- 
the upper limits on pi respectively, are de- 

istence of a kinematic solution defines the 
scribed by linear constraints. 

workspace of a given articulated chain. The Based on the above discussion, the inverse 
lack of a solution means that the chain can kinematics problem is formulated as follows: 
not attain the desired position and orienta- 

tion because it lies outside the workspace. Min P(Q) (1) 
The inverse kinematic problem (II(P) can be 

solved directly only if the considered chain subject to: 

is kinematically simple [7]. If the number 

of links is greater than six, the only avail- 
Qimin I Qi L qimar for 1 5 i 2 n (2) 

able approach to date is to use a numerical 

method to approximate the actual solution. The algorithm used to solve this problem is 

The inverse kinematics problem is modeled as described in detail in [15]. It uses Davidon’s 

a nonlinear programming problem. The ob- 4A goal is the desired position and orientation of 

jective of this problem is to minimize a non- the end effector. 
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variable metric method with BFGS (Broy- 

den, Fletcher, Goldfarb, Shanno) [l, 3, lo] 

approximate Hessian matrix update formula 

and Rosen’s projection method to handle the 

linear constraints [3,2]. The method is super- 

linear convergent [S] and each iteration has a 

complexity of O(n”) where n is the total num- 

ber of joint angles in the articulated chain. 

Example 

Figure 2 illustrates a three degrees of freedom 

planar manipulator. We can decide whether 

the different contours are workspace bound- 

aries by using an inverse kinematics based al- 

gorithm. This is achieved by calling the in- 

verse kinematics algorithm in order to test 

the reachability of points A, B,C, and D. 

The inner most contour belongs to an interior 
The major problems with this class of al- workspace boundary since point B is reach- 

gorithms are: able and A is not. The other contours are 

interior since points B, C and D are reach- 

1. The optimal solution is not guaranteed ab1e* 

since it may converge to a local minimum 

rather than the global minimum. 5 Conclusions 

2. The iteration time is significantly af- Algorithms based on screw theory are used 

fected by the value of the tolerance. to compute workspace contours. These con- 

tours include the workspace boundary and in- 

terior surfaces. These contours are classified 

4 Hybrid Algorithms by the stability and unstability of the ma- 

We have discussed how algorithms based on 

screw theory are used to compute different 

workspace contours. However, this class of 

algorithms does not offer a criteria to dis- 

tinguish holes and voids in the generated 

workspace, i.e., there is no way to examine 

whether the points bounded by different con- 

tours in figure 2 are reachable or not. The 

ability to distinguish holes and voids that are 

buried inside the workspace can be achieved 

by using the inverse kinematics based algo- 

rithms for points that lie between different 

interior surfaces. An interior surface is a hole 

(or void) if it lies between a reachable point 

and a nonreachable one. The following exam- 

ple illustrates this approach. 

nipulator’s joints. However, this classifica- 

tion does not provide any information about 

holes and voids inside the workspace. We il- 

lustrated how to integrate those algorithms 

and the inverse kinematics into a “hybrid al- 

gorithm”. The hybrid algorithms can detect 

the holes and voids that are buried inside the 

workspace. 
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Fjgure 1: Stable and unstable equilibrium positions 
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Figure 2: Different workspace contours 
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