
Design-Simulation-Optimization Package for a Generic
6-DOF Manipulator with a Spherical Wrist

MHER GRIGORIAN, TAREK SOBH
Department of Computer Science and Engineering, U. of Bridgeport, USA

ABSTRACT

Robot manipulators are built to meet certain pre-determined performance
requirements. The question of whether the robot will have the desired
functionality (e.g. dexterity, accuracy, reliability, speed, etc.) needs to be
answered before the robot is actually built.
We have developed a software package that can greatly ease the design of
a generic 6-DOF manipulator with a spherical wrist. Our package will
accept as input the configuration of a generic robot in D-H parameter form
and the robot dynamics parameters and produce a variety of closed form
solutions that are essential to the robot designer. The package can also be
used as a simulation tool that can tell the designer whether the manipulator
meets the desired functionality. It will also optimize several control and
structure parameters for the generic manipulator based on simulated task
descriptions.

KEYWORDS: robotics, prototyping, design, simulation, optimization

1. INTRODUCTION

In this section we discuss various well-known modules that provide a concise means of
describing a robot model. We also show how our package aids the design of a
manipulator by producing symbolic solutions for each of the modules.

1.1. Position Kinematics

The forward position kinematics module is necessary to determine the position and the
orientation of the robot end-effector in terms of the robot joint variables. The joint
variables are the angles between two links if the joint is revolute, and the joint extension
for prismatic joints. The transformation matrix T0

6, which gives the position and
orientation of the end-effector in base coordinates, can be obtained by successively
multiplying the homogenous transformation matrices Ai

j between two consecutive links.
In case of a 6-DOF robot, T0

6 = A0
1 * A1

2 * A2
3 * A3

4 * A4
5 * A5

6 [5,9,10]. Given the D-
H parameter table, our software package will form the A0

1..A5
6 matrices, perform the

necessary matrix multiplications and obtain symbolically the T0
1..T0

6 matrices. The
package generates C/C++ code to compute the position and orientation of the end-
effector given the suggested joint variables for a generic 6-DOF robot.

1.2. Inverse Position Kinematics

The inverse kinematics problem, as opposed to forward kinematics, is needed to compute
the joint variables of a robot given the position and the orientation of the end-effector.

The inverse kinematics problem is extremely time-consuming and requires heavy
calculations. For a 6-DOF robot, the transformation matrix T0

6 defines twelve highly
non-linear trigonometric equations. In a 6-DOF robot with a spherical wrist, kinematic
decoupling can be used to reduce the complexity of the inverse kinematics problem.
However, even after applying kinematic decoupling the inverse kinematics equations
remain remarkably complex for a generic robot. For a generic robot, the latest
Mathematica and Maple math engines are usually unable to obtain a closed form solution
[6,8]. The Robotics Toolbox for Matlab, on the other hand, can only produce numerical
solutions for the inverse kinematics equations [1].

1.3. Velocity Kinematics and Jacobian

The velocity kinematics module is needed to compute the velocity relationships between
the cartesian position and orientation of the robot end-effector and the joint variables. In
a 6-DOF robot, the Jacobian is a 6x6 matrix. It is extensively used in the analysis and
control of robot motion, planning and creation of smooth trajectories, detection of
singularities, etc. The Jacobian can be represented as J=[J1 J2 J3 J4 J5 J6], where if joint i
is revolute,








 −×
=

−

−−

1

11)(

i

ini
i Z

OOZ
J

and if joint is prismatic, i









= −

0
1i

i

Z
J

Zi is defined by the first three elements in third column of T0

i, and Oi is defined by the
first three elements in fourth column of T0

i [9,10]. Given the D-H parameter table, our
software package performs the necessary computations to symbolically derive the
Jacobian matrix. Having derived the Jacobian matrix, it is easy to obtain the velocity of
the robot end-effector in terms of joint velocities from:

QJX && *=

where X& is the cartesian velocity vector, J is the Jacobian matrix, and Q& is the joint
velocity vector [5,9,10]. Our package generates C/C++ code to compute the end-effector
velocity given join velocities.

1.4. Inverse Velocity Kinematics

The inverse velocity module is needed to express the robot joint velocity vector in terms
of the end-effector cartesian velocity vector. From the previous section we can derive the
inverse velocity equations as:

XJQ && *1−=

where Q& is the joint velocity vector, J-1 is the inverse of the Jacobian matrix, and X& is the
cartesian velocity vector [9,10]. We implemented a symbolic matrix inversion routine.
Given the D-H parameter table, our software package symbolically inverts the Jacobian
matrix to express the joint velocity vector in terms of the end-effector velocity vector.
The matrix inversion routine was designed and tested to handle long mathematical
expressions. The package generates C/C++ code to compute the joint velocity vector.

1.5. Acceleration Kinematics

The acceleration kinematics module is needed to express the acceleration of the robot
end-effector given the joint accelerations. By differentiating the velocity kinematics
equations, we obtain:

QJQJX &&&&&& ** +=

where X&& is the end-effector acceleration vector, J is the Jacobian matrix, Q&& is the joint
acceleration vector, J& is the time derivative of the Jacobian, and Q& is the joint velocity
vector [9,10]. In order to obtain J&, we implemented a symbolic differentiation library.
Given the D-H parameter table, our software package symbolically differentiates the
Jacobian matrix, and performs all necessary computations to obtain the end-effector
acceleration in terms of the joint accelerations. The differentiation routine was designed
and tested to handle long mathematical expressions. The package also generates C/C++
code to compute the acceleration kinematics for a generic 6-DOF robot.

1.6. Inverse Acceleration Kinematics

The inverse acceleration kinematics module is needed to express the joint accelerations in
terms of the end-effector acceleration vector. The equations needed in this module can
be derived from the acceleration kinematics equations:

)*(*1 QJXJQ &&&&&& −= −

where Q&& is the joint acceleration vector, J-1 is the inverse of the Jacobian matrix, X&& is the
end-effector acceleration vector, J& is the time derivative of the Jacobian, and Q& is the
joint velocity vector [9,10]. Given the D-H parameter table, our package performs all the
necessary computations to find a closed form solution for the joint acceleration vector.
C/C++ code to compute the joint acceleration vector is generated. The modules
mentioned above were tested on several robot models, including D-H parameters for a
PUMA 560 robot.

2. TRAJECTORY GENERATION

2.1. Cubic Polynomial

In most scenarios, robots are commanded to move from one position to another in a time
interval t. Let the joint variables vector be Q0 at time t0, and the joint velocity variables
vector be Q . At time t

0
& f we would like the robot to have joint variables vector Q1, and

joint velocity variables vector Q . In order to obtain smooth motion from Q
1
& 0 to Q1,

trajectory generator needs to be implemented. We implemented a polynomial trajectory
generator with four independent coefficients of the form:

Qd = a0 + a1 * t + a2 * t2 + a3 * t3

dQ& = a1 + 2*a2*t + 3*a3*t2

where Qd is the desired joint position vector, and Qd
& is the desired joint velocity vector.

The four coefficients a0, a1, a2, a3 can be found by solving the equations that satisfy the
initial constraints (Q0, , Q

0Q& 1, 1Q). As a result, we have: &

A0 = Q0

A1 = Q1
&

A2 = (3*(Q1-Q0)-(2*Q0

&+
1Q&)*tf)/tf

2

A3 = (2*(Q0-Q1)+(Q0
&+Q1

&)*tf)/tf
3

The trajectory generator defines where the robot joint variables should be at any time t
while moving from Q0 to Q1 [10]. Our software package generates C/C++ code that
implements the trajectory generator described above.

2.2. Constant Velocity with Cubic Polynomial Blends

In many cases, constant velocity is desired along a portion of the path of the robot
movement. In such cases, constant velocity with cubic polynomial blends trajectory
generator can be used. To achieve the desired performance, we specify the position and
velocity in three parts. The first part from time t0 to time tb is cubic polynomial
(described in 2.1). At time tb the velocity of the joints reaches the desired velocity and
the trajectory switches to a linear function, which corresponds to a constant velocity. At
time tf – tb the trajectory switches back to cubic polynomial. C/C++ code implementing
this trajectory generator is generated by our package.

3. SIMULATION AND CONTROL

3.1. Dynamics

The dynamics model of a robot identifies what torques need to be applied on joints in
order to cause the manipulator move in a certain manner. The rigid body dynamics of a
robot have form:

τ = M(Q) * Q&& + V(Q,Q&) + G(Q) + F(Q, Q&)

where τ is the torque vector applied to the links, M(Q) is the inertia matrix of the
manipulator, V(Q, Q&) is the vector of centrifugal and Coriolis terms, G(Q) is the vector of
gravity terms, and F(Q, Q&) is the model of friction [4,7]. The dynamics equations of a
robot depend on joint locations, the mass, mass distribution, and length of each link, etc.
Given the desired joint angles, speed, and acceleration, the dynamics equations tell what
torques should be applied to each joint. Given the M, V, G and F matrices our package
will generate C/C++ code for the dynamics model. The dynamics module is the most
time consuming component among the manipulator’s modules due to the heavy
calculations involved in dynamics equations. For this reason most of the times in current
industrial practice a feedback control system, which is an approximation of the nonlinear
nature of the dynamics equations, is being used instead of the dynamics model [2,3]. In
our software package we use a local PD controller, as described in the next sections.

3.2. Inverse Dynamics

The inverse dynamics module can be used to calculate the new position, velocity and
acceleration of a manipulator given a set of torques applied to each link. The inverse
dynamics equations can be derived from the dynamics equations:

Q&& = M-1(Q) * (τ - V(Q, Q&) - G(Q) - F(Q , Q&)) [4,7]

The inverse dynamics module can be very useful in simulating the motion of a robot.
This is particularly beneficial since the designers can have a reasonable estimate on how
the robot will respond to a set of torques before the robot is actually built. If the robot’s
performance is not satisfactory, changes can be made to the design of the model. Our
software package implements an inverse dynamics model. Given the M, V, and G
matrices the package will generate C/C++ code needed to calculate the resulting joint
angles, speed and acceleration.

3.3. PD Controller

In our software package we have implemented a local proportional plus derivative (PD)
controller (Figure 1). Many of the feedback algorithms used in industrial practice are
based on variations of the PD controller.

Figure 1. Block diagram of the PD controller

The control system we used can be represented in the form:

τ=f(Q,Q&,Q&&)*Q&&+f(Q,Q&,Q&&)*Kp*ep + f(Q,Q&,Q&&)*Kv*ev

where f is a function of robot joint position, velocity, and acceleration vectors, Q&& is the
desired link acceleration vector, Kp is the proportional gain, Kv is the derivative gain, ep is
the error in joint variables vector, and ev is the error in joint velocities vector. Our
package accepts any mathematical function f as a coefficient to the loop variables. This
allows the user to highly customize the loop controller. When the PD feedback algorithm
is being used to control a robot, the readings from sensors constitute the feedback to the
control system. When it is used for simulation, the inverse dynamics model can be used
to approximate the robot behavior. Since the PD controller requires very little
computation, high update rates, required to obtain stability, are possible in real time [2,3].
We also have the option of including a PID and/or other feedback control functions.
Non-linear compensators can be applied to reject time varying disturbances.

4. THE PACKAGE AND IMPLEMENTATION

Our package consists of two modules: the creation module and the execution module.

4.1. Creation Module

The creation module is responsible for creating the kinematics, dynamics, and the PD
controller modules. It will take as input the D-H parameter table and symbolically derive
the equations in text, C/C++ or Mathematica formats. Figure 2 shows the main screen for

the creation module. The equations derived by this module will be used as input by the
execution module to run simulation and optimization tasks.

Figure 2. Main screen for the creation module

4.2. Execution Module

The execution module can be used as a simulation and/or optimization tool. The user has
to enter the initial and final positions of the manipulator either in cartesian coordinates
(Figure 3) or in terms of joint variables (Figure 4).

 Figure 3. Cartesian coordinates setup Figure 4. Joint variables setup

Other basic settings need to be provided as well: the Kp and Kv values, the time interval in
which the robot should move from the initial to the final position, the update rate in the
feedback controller, the trajectory generator to be used, etc (Figure 5).

Figure 5. Settings screen

After the settings have been successfully initialized, our software package will run the
control loop on the points specified by the user and produce graphs showing the
differences between the desired and actual positions of the manipulator. A simplified 3D

model showing the movement of the manipulator will be displayed as well. Figures 6
and 7 show screen shots obtained during program execution.

Figure 6, 7. Simulation screen shot (the graphs represent desired versus actual robot coordinates)

When run in the optimization mode, our package can determine the best values for Kp ,
Kv, and/or the update rate in addition to some potential robot dynamics parameter
optimizations. Given the range of loop parameters (Figure 5), the package runs a control
loop for all combinations of the parameters under consideration. It will determine the
best loop parameters by accumulating the absolute values of the difference between the
desired and observed joint angles. Figure 8 shows a set of optimized parameters obtained
by our package.

 Figure 8. Kp , Kv, and update rate Figure 9. Desired versus observed robot
 optimization coordinates with optimized parameters

The user then can run the simulation with optimized parameters (Figure 9) and compare
the results with the performance obtained by using custom, non-optimized ones (Figure
10).

Figure 10. User defined vs. optimized Kp , Kv, and update rate

5. CONCLUSION AND FUTURE ENHANCEMENTS

Figure 11 summarizes our software package:

Figure 11. Block diagram for the simulation package

Our package can reduce the difficulties that arise during the design of a new robot by
creating a number of modules that need to be created before a robot is built. The
feedback control simulation will give a good estimate of whether the robot will have the
desired functionality. The package can optimize the PD controller and determine the
optimal values for some dynamic parameters that minimize robot errors. Potential future
enhancements to the package include: (1) generation of the inverse kinematics module
and including a numerical solution package for a set of robots, (2) implementation of
more advanced trajectory generation algorithms, (3) implementation of a joint PID
(Proportional Integral Derivative) controller, which can achieve higher accuracy and
reliability than the current PD controller, etc.

REFERENCES

1. Corke, P. I., “A Robotics Toolbox for MATLAB”, IEEE Robotics and Automation Magazine, Volume
3(1), March 1996
2. Dekhil, Mohamed, Henderson Thomas. C., Sobh, Tarek M., and Sabbavarapu, A. “Prototyping a Three-
link Robot Manipulator,'' Presented in the Second World Automation Congress, Sixth International
Sympsium on Robotics and Manufacturing (ISRAM 96), Montpellier, France, May 1996.
3. Dekhil, Mohamed, Sobh, Tarek M., Henderson, Thomas C., Sabbavarapu, Anil, and Mecklenburg,
Robert, “Robot Manipulator Prototyping (Complete Design Review)”, University of Utah, 1994
4. De Wit, Charlos Canudas, and Siciliano, Bruno, and Bastin, Georges, “Theory of Robot Control”,
Springer-Verlag London, 1996
5. Ho, C. Y., and Sriwattanathamma, J., “Robot Kinematics Symbolic Automation and Numerical
Synthesis”, Ablex Publishing Corporation, 1990
6. Maple V Release 5, Version 5.00, Waterloo Maple Inc.
7. Marris, Andrew W., and Stoneking, Charles E., “Advanced Dynamics”, McGraw-Hill, 1967
8. Mathematica 3.0, Wolfram Research Inc.
9. McKerrow, Phillip John, “Introduction to Robotics”, Addison Wesley, 1991
10. Spong, W. Mark, “Robot Dynamics and Control”, John Wiley, 1989

	MHER GRIGORIAN, TAREK SOBH
	Department of Computer Science and Engineering, U. of Bridgeport, USA
	ABSTRACT
	
	
	INTRODUCTION

	Inverse Position Kinematics
	The inverse kinematics problem, as opposed to forward kinematics, is needed to compute the joint variables of a robot given the position and the orientation of the end-effector. The inverse kinematics problem is extremely time-consuming and requires hea
	Velocity Kinematics and Jacobian
	The velocity kinematics module is needed to compute the velocity relationships between the cartesian position and orientation of the robot end-effector and the joint variables. In a 6-DOF robot, the Jacobian is a 6x6 matrix. It is extensively used in t
	�

	Inverse Velocity Kinematics
	Acceleration Kinematics
	The acceleration kinematics module is needed to express the acceleration of the robot end-effector given the joint accelerations. By differentiating the velocity kinematics equations, we obtain:

	Inverse Acceleration Kinematics
	Inverse Dynamics
	
	REFERENCES

