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ABSTRACT 
 
Robot manipulators are built to meet certain pre-determined performance 
requirements.  The question of whether the robot will have the desired 
functionality (e.g. dexterity, accuracy, reliability, speed, etc.) needs to be 
answered before the robot is actually built. 
We have developed a software package that can greatly ease the design of 
a generic 6-DOF manipulator with a spherical wrist.  Our package will 
accept as input the configuration of a generic robot in D-H parameter form 
and the robot dynamics parameters and produce a variety of closed form 
solutions that are essential to the robot designer.  The package can also be 
used as a simulation tool that can tell the designer whether the manipulator 
meets the desired functionality.  It will also optimize several control and 
structure parameters for the generic manipulator based on simulated task 
descriptions. 
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1. INTRODUCTION 
 
In this section we discuss various well-known modules that provide a concise means of 
describing a robot model.  We also show how our package aids the design of a 
manipulator by producing symbolic solutions for each of the modules. 
 
1.1.  Position Kinematics 
 
The forward position kinematics module is necessary to determine the position and the 
orientation of the robot end-effector in terms of the robot joint variables.  The joint 
variables are the angles between two links if the joint is revolute, and the joint extension 
for prismatic joints.  The transformation matrix T0

6, which gives the position and 
orientation of the end-effector in base coordinates, can be obtained by successively 
multiplying the homogenous transformation matrices Ai

j between two consecutive links.  
In case of a 6-DOF robot, T0

6 = A0
1 * A1

2 * A2
3 * A3

4 * A4
5 * A5

6 [5,9,10].  Given the D-
H parameter table, our software package will form the A0

1..A5
6 matrices, perform the 

necessary matrix multiplications and obtain symbolically the T0
1..T0

6 matrices.  The 
package generates C/C++ code to compute the position and orientation of the end-
effector given the suggested joint variables for a generic 6-DOF robot. 
 

1.2. Inverse Position Kinematics 
 
The inverse kinematics problem, as opposed to forward kinematics, is needed to compute 
the joint variables of a robot given the position and the orientation of the end-effector.  



The inverse kinematics problem is extremely time-consuming and requires heavy 
calculations.  For a 6-DOF robot, the transformation matrix T0

6 defines twelve highly 
non-linear trigonometric equations.  In a 6-DOF robot with a spherical wrist, kinematic 
decoupling can be used to reduce the complexity of the inverse kinematics problem.  
However, even after applying kinematic decoupling the inverse kinematics equations 
remain remarkably complex for a generic robot.  For a generic robot, the latest 
Mathematica and Maple math engines are usually unable to obtain a closed form solution 
[6,8]. The Robotics Toolbox for Matlab, on the other hand, can only produce numerical 
solutions for the inverse kinematics equations [1]. 
 
1.3. Velocity Kinematics and Jacobian 
 
The velocity kinematics module is needed to compute the velocity relationships between 
the cartesian position and orientation of the robot end-effector and the joint variables.  In 
a 6-DOF robot, the Jacobian is a 6x6 matrix.  It is extensively used in the analysis and 
control of robot motion, planning and creation of smooth trajectories, detection of 
singularities, etc.  The Jacobian can be represented as J=[J1 J2 J3 J4 J5 J6], where if joint i  
is revolute, 
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and if joint  is prismatic, i
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Zi is defined by the first three elements in third column of T0

i, and Oi is defined by the 
first three elements in fourth column of T0

i [9,10].  Given the D-H parameter table, our 
software package performs the necessary computations to symbolically derive the 
Jacobian matrix.  Having derived the Jacobian matrix, it is easy to obtain the velocity of 
the robot end-effector in terms of joint velocities from: 
 

QJX && *=  
 

where X& is the cartesian velocity vector, J is the Jacobian matrix, and Q& is the joint 
velocity vector [5,9,10].  Our package generates C/C++ code to compute the end-effector 
velocity given join velocities. 
 

1.4. Inverse Velocity Kinematics 
 
The inverse velocity module is needed to express the robot joint velocity vector in terms 
of the end-effector cartesian velocity vector.  From the previous section we can derive the 
inverse velocity equations as: 

XJQ && *1−=  
 

where Q& is the joint velocity vector, J-1 is the inverse of the Jacobian matrix, and X& is the 
cartesian velocity vector [9,10].  We implemented a symbolic matrix inversion routine.  
Given the D-H parameter table, our software package symbolically inverts the Jacobian 
matrix to express the joint velocity vector in terms of the end-effector velocity vector.  
The matrix inversion routine was designed and tested to handle long mathematical 
expressions.  The package generates C/C++ code to compute the joint velocity vector.  
 



1.5. Acceleration Kinematics 
 
The acceleration kinematics module is needed to express the acceleration of the robot 
end-effector given the joint accelerations.  By differentiating the velocity kinematics 
equations, we obtain: 

QJQJX &&&&&& ** +=  
 

where X&& is the end-effector acceleration vector, J is the Jacobian matrix, Q&& is the joint 
acceleration vector, J& is the time derivative of the Jacobian, and Q& is the joint velocity 
vector [9,10].  In order to obtain J&, we implemented a symbolic differentiation library.  
Given the D-H parameter table, our software package symbolically differentiates the 
Jacobian matrix, and performs all necessary computations to obtain the end-effector 
acceleration in terms of the joint accelerations.  The differentiation routine was designed 
and tested to handle long mathematical expressions. The package also generates C/C++ 
code to compute the acceleration kinematics for a generic 6-DOF robot. 
 

1.6. Inverse Acceleration Kinematics 
 
The inverse acceleration kinematics module is needed to express the joint accelerations in 
terms of the end-effector acceleration vector.  The equations needed in this module can 
be derived from the acceleration kinematics equations: 
 

)*(*1 QJXJQ &&&&&& −= −  
 

where Q&& is the joint acceleration vector, J-1 is the inverse of the Jacobian matrix, X&& is the 
end-effector acceleration vector, J& is the time derivative of the Jacobian, and Q& is the 
joint velocity vector [9,10].  Given the D-H parameter table, our package performs all the 
necessary computations to find a closed form solution for the joint acceleration vector.  
C/C++ code to compute the joint acceleration vector is generated.  The modules 
mentioned above were tested on several robot models, including D-H parameters for a 
PUMA 560 robot. 
 

2. TRAJECTORY GENERATION 
 
2.1. Cubic Polynomial 
 
In most scenarios, robots are commanded to move from one position to another in a time 
interval t.  Let the joint variables vector be Q0 at time t0, and the joint velocity variables 
vector be Q .  At time t

0
& f we would like the robot to have joint variables vector Q1, and 

joint velocity variables vector Q .  In order to obtain smooth motion from Q
1
& 0 to Q1, 

trajectory generator needs to be implemented.  We implemented a polynomial trajectory 
generator with four independent coefficients of the form: 
 

Qd = a0 + a1 * t + a2 * t2 + a3 * t3 
 

dQ&  = a1 + 2*a2*t + 3*a3*t2 
 

where Qd is the desired joint position vector, and Qd
&  is the desired joint velocity vector.  

The four coefficients a0, a1, a2, a3 can be found by solving the equations that satisfy the 
initial constraints (Q0, , Q

0Q& 1, 1Q ).  As a result, we have: &



A0 = Q0 
 

A1 = Q1
& 

 
A2 = (3*(Q1-Q0)-(2*Q0

&+
1Q&)*tf)/tf

2 
 

A3 = (2*(Q0-Q1)+( Q0
&+Q1

&)*tf)/tf
3 

 
The trajectory generator defines where the robot joint variables should be at any time t 
while moving from Q0 to Q1 [10].  Our software package generates C/C++ code that 
implements the trajectory generator described above. 
 
2.2. Constant Velocity with Cubic Polynomial Blends 
 
In many cases, constant velocity is desired along a portion of the path of the robot 
movement.  In such cases, constant velocity with cubic polynomial blends trajectory 
generator can be used.  To achieve the desired performance, we specify the position and 
velocity in three parts.  The first part from time t0 to time tb is cubic polynomial 
(described in 2.1).  At time tb the velocity of the joints reaches the desired velocity and 
the trajectory switches to a linear function, which corresponds to a constant velocity.  At 
time tf – tb the trajectory switches back to cubic polynomial.  C/C++ code implementing 
this trajectory generator is generated by our package. 
 

3. SIMULATION AND CONTROL 
 
3.1. Dynamics 
 
The dynamics model of a robot identifies what torques need to be applied on joints in 
order to cause the manipulator move in a certain manner.  The rigid body dynamics of a 
robot have form: 
 

τ = M(Q) * Q&& + V(Q,Q&) + G(Q) + F(Q, Q&) 
 

where τ is the torque vector applied to the links, M(Q) is the inertia matrix of the 
manipulator, V(Q, Q&) is the vector of centrifugal and Coriolis terms, G(Q) is the vector of 
gravity terms, and F(Q, Q&) is the model of friction [4,7].  The dynamics equations of a 
robot depend on joint locations, the mass, mass distribution, and length of each link, etc. 
Given the desired joint angles, speed, and acceleration, the dynamics equations tell what 
torques should be applied to each joint.  Given the M, V, G and F matrices our package 
will generate C/C++ code for the dynamics model.  The dynamics module is the most 
time consuming component among the manipulator’s modules due to the heavy 
calculations involved in dynamics equations.  For this reason most of the times in current 
industrial practice a feedback control system, which is an approximation of the nonlinear 
nature of the dynamics equations, is being used instead of the dynamics model [2,3].  In 
our software package we use a local PD controller, as described in the next sections. 
 
3.2. Inverse Dynamics 
 
The inverse dynamics module can be used to calculate the new position, velocity and 
acceleration of a manipulator given a set of torques applied to each link.  The inverse 
dynamics equations can be derived from the dynamics equations: 



Q&& = M-1(Q) * (τ - V(Q, Q&) - G(Q) - F(Q , Q&))     [4,7] 
 
The inverse dynamics module can be very useful in simulating the motion of a robot.  
This is particularly beneficial since the designers can have a reasonable estimate on how 
the robot will respond to a set of torques before the robot is actually built.  If the robot’s 
performance is not satisfactory, changes can be made to the design of the model.  Our 
software package implements an inverse dynamics model.  Given the M, V, and G 
matrices the package will generate C/C++ code needed to calculate the resulting joint 
angles, speed and acceleration. 
 
3.3. PD Controller 
 
In our software package we have implemented a local proportional plus derivative (PD) 
controller (Figure 1).  Many of the feedback algorithms used in industrial practice are 
based on variations of the PD controller.   
 

 
Figure 1. Block diagram of the PD controller 

 
The control system we used can be represented in the form: 
 

τ=f(Q,Q&,Q&&)*Q&&+f(Q,Q&,Q&&)*Kp*ep + f(Q,Q&,Q&&)*Kv*ev 
 

where f is a function of robot joint position, velocity, and acceleration vectors, Q&& is the 
desired link acceleration vector, Kp is the proportional gain, Kv is the derivative gain, ep is 
the error in joint variables vector, and ev is the error in joint velocities vector.  Our 
package accepts any mathematical function f as a coefficient to the loop variables.  This 
allows the user to highly customize the loop controller.  When the PD feedback algorithm 
is being used to control a robot, the readings from sensors constitute the feedback to the 
control system.  When it is used for simulation, the inverse dynamics model can be used 
to approximate the robot behavior.  Since the PD controller requires very little 
computation, high update rates, required to obtain stability, are possible in real time [2,3]. 
We also have the option of including a PID and/or other feedback control functions.  
Non-linear compensators can be applied to reject time varying disturbances. 
 
4. THE PACKAGE AND IMPLEMENTATION 
 
Our package consists of two modules: the creation module and the execution module. 
 

4.1. Creation Module 
 
The creation module is responsible for creating the kinematics, dynamics, and the PD 
controller modules.  It will take as input the D-H parameter table and symbolically derive 
the equations in text, C/C++ or Mathematica formats.  Figure 2 shows the main screen for 



the creation module.  The equations derived by this module will be used as input by the 
execution module to run simulation and optimization tasks.  
 

 
Figure 2. Main screen for the creation module 

 
4.2. Execution Module 
 
The execution module can be used as a simulation and/or optimization tool.  The user has 
to enter the initial and final positions of the manipulator either in cartesian coordinates 
(Figure 3) or in terms of joint variables (Figure 4). 
 

                                                       
      Figure 3. Cartesian coordinates setup                                              Figure 4. Joint variables setup 
 
Other basic settings need to be provided as well: the Kp and Kv values, the time interval in 
which the robot should move from the initial to the final position, the update rate in the 
feedback controller, the trajectory generator to be used, etc (Figure 5).  
 

 
Figure 5. Settings screen 

 
After the settings have been successfully initialized, our software package will run the 
control loop on the points specified by the user and produce graphs showing the 
differences between the desired and actual positions of the manipulator.  A simplified 3D 



model showing the movement of the manipulator will be displayed as well.  Figures 6 
and 7 show screen shots obtained during program execution.  
 

   
Figure 6, 7. Simulation screen shot (the graphs represent desired versus actual robot coordinates) 

 
When run in the optimization mode, our package can determine the best values for Kp ,  
Kv, and/or the update rate in addition to some potential robot dynamics parameter 
optimizations.  Given the range of loop parameters (Figure 5), the package runs a control 
loop for all combinations of the parameters under consideration.  It will determine the 
best loop parameters by accumulating the absolute values of the difference between the 
desired and observed joint angles.  Figure 8 shows a set of optimized parameters obtained 
by our package.  
 

   
              Figure 8. Kp ,  Kv, and update rate                           Figure 9. Desired versus observed robot   
                                optimization                                            coordinates with optimized parameters 
                                        
The user then can run the simulation with optimized parameters (Figure 9) and compare 
the results with the performance obtained by using custom, non-optimized ones (Figure 
10). 
 



 
Figure 10. User defined vs. optimized Kp ,  Kv, and update rate 

 
5. CONCLUSION AND FUTURE ENHANCEMENTS 
 
Figure 11 summarizes our software package: 
 

 
Figure 11. Block diagram for the simulation package 

 
Our package can reduce the difficulties that arise during the design of a new robot by 
creating a number of modules that need to be created before a robot is built.  The 
feedback control simulation will give a good estimate of whether the robot will have the 
desired functionality.  The package can optimize the PD controller and determine the 
optimal values for some dynamic parameters that minimize robot errors.  Potential future 
enhancements to the package include: (1) generation of the inverse kinematics module 
and including a numerical solution package for a set of robots, (2) implementation of 
more advanced trajectory generation algorithms, (3) implementation of a joint PID 
(Proportional Integral Derivative) controller, which can achieve higher accuracy and 
reliability than the current PD controller, etc. 
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