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Abstract 

In this work we address the problem of manu­
facturing machine parts from sense data. Con­
structing geometric models for the objects from 
sense data is the intermediate step in a re­
verse engineering manufacturing system. Sen­
sors are usually inaccurate, providing uncer­
tain sense information. We construct geo­
metric entities with uncertainty models for the 
objects under consideration from noisy mea­
surements and proceed to do reasoning on the 
uncertain geometries, thus, adding robustness 
to the construction of geometries from sensed 
data. 

1 Introduction 

Reverse engineering is a process that reconstruct a rep­
resentation of a physical model, so that it can be repro­
duced identically. It is a new branch in the CAD/CAM 
field . Parts are manufactured according to blue prints, 
but when blue prints are not available, (such as, the 
part is too old, and its blue prints are missing), reverse 
engineering can be used to reproduce these parts. This 
can be achieved by the following two steps: sensing the 
part to construct its CAD representation and then man­
ufacturing the part according to the representation . It 
is easy to see that the accuracy of measurement is the 
key to success in reproducing an accurate CA D model. 

The accuracy of the measurement can be improved 
not only by improving the quality of measuring instru­
ment, but also by optimizing sampling data. A reverse 
engineering system has been built and the measuring 
process is done by a vision sensor (B/W CCD camera) 
and a coordinate measuring machine (CMM). The phys­
ical model is inspected by cooperating the observer cam­
era and the probing CMM. The observer camera pro-

"This work was supported in part by ARPA under ARO grant 
number DAAH04-93-G-0420, NSF grant CDA 9024721, and a 
University of Utah Research Committee grant. All opinions, find­
ings, conclusions or recommendations expressed in this document 
are those of the author and do not necessarily reflect the views of 
the sponsoring agencies. 

vides a high level (qualitative) description of the phys­
ical model, and the CMM complete the CAD model 
with precise parametric data. Figures 1 and 2 provide 
an over view of the whole system. Figures 3, 4, and 5 
show original and reverse-engineered CAD models and 
physical parts . Figure 6 shows the vision setup. 

In order to increase accuracy and efficiency of the 
measurement , a feedback sensing system is designed as 
shown in figure 7. 
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Figure 1: Overview of the system 
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Figure 2: Sensing 

In this feedback system, a probabilistic geometric 
modeJer is involved as a feedback agent to provide in­
formation for further measurements required to refine 
the CAD model, and also gives a quantitative mea­
sure of the accuracy of the current CAD model. The 
CMM machine actively measures the parameters for 10-



cal features . By using the probabilistic geometric mod­
eler performing geometric modeling operations, redun­
dant information of the part geometry will be computed 
to reduce the load of the CMM measurement activi­
ties. Therefore, it improves the efficiency of the sensing 
process, besides, the geometric reasoning on the proba­
bilities of uncertain geometries can guide the CMM to 
perform focused measurements to allow for higher accu­
racy and efficiency. For instance, the slot (see figure 8) 
in mechanical engineering is a commonly used feature, 
and the parallelism of the two side planes is an impor­
tant measurement. 

Figure 3: CA 0 Model of the Original Part 

Figure 4: CA 0 Model of the Reverse-engineered part 

Figure 5: Original and Reverse-engineered Parts 

The two side planes are based on sampling points 
from CMM and/or visual data. Measurements of these 
points are not exact, therefore, these two planes that are 
constructed from these measurements, are planes with 
probabilities as the confidence measure. Consequently, 
the parallelism is no longer a definite relation, it has a 
probability distribution. If the confidence of the paral­
lelism does not satisfy the manufacturing requirement, 
refinement of the two side planes is required, hence re­
measuring of the points is performed. 

Figure 6: Experimental Setup 

Some work has been done in the probabilistic rela­
tionship between the geometric objects and their rela­
tions, but the probability relations between the sam­
pling points and geometric primitives have not yet been 
studied extensively. The geometric objects that this 
probabilistic geometric modeler is based on are con­
structed from sensing data. Therefore, study of the 
relation of the probabilistic characters of geometric ob­
jects and sensing data is very important. This paper 
presents the study of these relations. The work ad-
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Figure 7: Feedback Sensing System 

Figure 8: Slot 

dresses the statistic geometric objects constructed from 
sensing data, relations of these statistic geometries, and 
the effect of decisions on its relative geometric objects. 

2 Related Work 

Stochastic geometry has been systematically studied 
by mathematicians. In [12], mathematical theories of 
stochastic geometry are well studied, and uncertain ge­
ometric features can be represented as constrained func­
tions. Classic examples of stochastic geometry can 
be found in [11]. Kendall and Moran[12]' describe a 
method of choosing distributions on geometric elements 
which provide a consistent interpretation of physical ge­
ometric elements. 

Recently, research about sensing and uncertain ge­
ometry in robotics presents lots of ideas for handling 
uncertainty geometry. Hugh F. Durrant-Whyte in [5, 4] 
has modeled the sensor in a manner that explicitly ac­
counts for the inherent uncertainty encountered in robot 
operations. In Davidson's thesis[13], he made the im­
portant observation that arbitrary random geometric 
objects can be described by a point process in parame-

ter space. 
In computer-aided geometric modeling, methodolo­

gies for building a robust geometric modeler explores 
ways of handling the uncertain geometry caused by the 
imprecise computations. Arbitrary decisions are made, 
when uncertainty arises. In [14, 2, 8, 7, 3, 1, 9, 6, 10], 
three region tolerances are used to keep track of un­
certainty caused by the computational error. In [15], 
arbitrary decisions are made and corresponding uncer­
tainties are restricted. 

3 Representations for Uncertain 
Geometry 

In geometric modeling, algorithms and representations 
for geometric objects are well developed, but the tol­
erance (uncertainty of geometry) has not yet been well 
defined. In [14], a geometric object is represented by 
boundary and hybrid representations, associated with 
a tolerance representing the uncertainty of the geome­
try. Figures 9 to 13 presents tolerancing for some well 
known geometric features. 

Based on the representations that has been developed 
and used in [14], a representation for uncertain geome­
try is developed as follows: 

An uncertain geometric object is represented in two 
parts: a geometric description, and a probabilistic dis­
tribution of geometry. The geometric description is a 
parameter vector, and the probabilistic distribution of 
geometry is a vector of the same dimensions as the geo­
metric description, but with corresponding probabilistic 
distributions of the parameters. 

For instance, a plane can be specified as a equation: 
(A, B, C), (fa, Ib, Ie), where (A, B, C) is the geometric 
description and z = Ax + By + C. (fa, Ib, Ie) is the 
probabilistic distribution of geometry, and also can be 
specified in another form: (P, V), (fp,lv), as shown in 
figure 14, where P is a base point, and V is the nor­
mal vector of the plane. Ip is the uncertainty of the 
base point, and Iv is the uncertainty of the normal vec­
tor. It can be proved that Ip and Iv can be computed 
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from fa, fb, fe, and P, V can be computed from (A, B, 
C). By defining fa, fb, fe, different types of probability 
distributions can be handled by this representation. 
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Figure 14: Representation of a Plane 

4 Experiment on Statistic Ge­
ometric Objects Constructed 
From Sensing Data 

The geometric objects that the modeler operates on, are 
constructed from the sensing data. How the distribution 
of sensing data affects the uncertainty of the geometry is 
the basis for defining the distributions of the geometry. 
In this section, the uncertainty of the plane relating to 
the sensing 3D coordinates is studied. A set of discrete 
sensing data is used to perform the computations. 

4.1 Best Least Square Fit 

In order to reduce the random error, usually, n sampling 
points are measured to defining a plane, yet the points 
have certain probability distributions which mainly de­
pend on the measuring machine (e.g CMM), the n 
points are independent random events. Therefore, a 
best least square fit method for computing the plane 
parameter is used. This approach gives the maximum 
liklehood result, and confidence on the sampling data 
to be a plane. 

Assuming that input data is (Xi, Yi, Zi), where Xi, Yi, Zi 

are either fixed values, or probability functions. They 
can be either independent, or correlated. Explicit func­
tion definition for a plane in 3D will be Z = Ax+By+C. 
If there are n points, the best least fit plane should be 
the solution of the following equation set. 

Where 

z= [::J 
p=[ 

Xl Yl 

1 
X2 Y2 

xn Yn 

Because P is an n x 3 matrix, and X is a 3 x 1 matrix, 
rank(P) = 3, and n 2': 3, solution of X is unique. When 
n > 3, the solution X is a best least square fit. 

X = (pT • P) -1 • P • Z 
Or in the other form: 

A 
B 
C 

f(x,y,z) 
g(x,y,z) 
h(x,y,z) 

Where X E [Xl, X2], y E [Yl, Y2], z E [Zl, Z2] are dis­
crete. Function f, g, h are non-linear functions. To 
compute the probability distribution of A, B, and C, 
exhaustively computing values of f, g, and h, will pro­
vide the discrete probability distribution array for A, B, 
and C. 

From the above mathematics, we can see that the 
computation complexity is exponential. If m is the num­
ber of distribution values and n is the number of sam­
pling points, this above computation will be performed 
(3m)n times. 

4.2 Sensing Data and its Corresponding 
Results 

The sensing data is modeled by discrete points with 
their corresponding probabilities. Normally, a point in 
3D is represented as (x, Y, z), but for this sensing data, 
x, Y, and z, are no long a single value, they are distri­
butions as shown in figure 15. 

Due to the computational complexity, and the gener­
ality of the problem, a three distribution values data set 
is used for experiments. The resulting planes (A, B, C) 
along with their distributions are computed. Graphs 
of A,B, and C distributions are approximated by the 
following computations. 

What we want to get is the concept of the f(x) 
shape. The data we computed are discrete state vec­
tor (A, B, C) and its probability. P(Xi < X < Xi+l) = J::+l f(x) is computed and plotted, where x can be A, 
B, or C. and Xmin < Xi < x max . In order to smooth 
the curve, an overlapped s;t of Xi is used. In the result 
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Figure 15: Sensing Data 

figures, the x axis are the values of A, B, C respectively, 
and the y axis are the corresponding probability of that 
value. 

Test 1: Uniform distribution: the sensing data is 
shown in figure 16. 
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Figure 16: Uniform Distribution 

There are a total three points with such distributions, 
planes defined by these points are computed. The dis­
tributions of A, B, C are shown in the following figures. 

Test 2: Gaussian distribution: the sensing data is 
shown in figure 17 

There are a total of three points with such distribu­
tions, the planes defined by these points are computed. 
The distributions of A, B, C are shown in figures 18 
to 20. 

From the uniform distribution and gaussian distribu­
tion test data, we can see that the distribution of the 
(a, b, c) space is Gaussian despite of the probability dis­
tributions of the sensing data. 

Probability 

5 

0.5 

0.25 
0.2 0.2 

Data value 

Figure 17: Gaussian Distribution 

Relations of Statistic Geome­
tries and its Effect on Relative 
Geometries 

As mentioned in the introduction, the goal of this prob­
abilistic modeler is to feedback control the sensing de­
vices to measure the physical model and give a quan­
titative confidence measurement for the CAD model. 
Some relations of these uncertain geometries are com­
puted, and results are computed with their uncertainty 
distributions. 

Basically, geometric relations are set relations, such 
as: intersecting, coincidence, incidence, apartness, and 
parallelism. Because of the uncertainty of the geome­
tries, these relations are not definite, they are decisions 
with certain confidence, also, this confidence can be 
specified by its probability. For instance, a point in­
cident on a plane, can be computed as a point incident 
on the plane with 0.9 probability. This provides reason­
ing based on probabilities. 

A feedback computation of a plane that is supposed 
to be collinear with a given plane is studied. A program 
that takes the output discrete planes along with their 
probabilities is implemented, and the cases of parallel 
and collinear statements are computed with their prob­
abilities. Some examples of parallelism and collinearity 
have been tested. For example, collinearity and paral­
lelism of the uniform distribution planes (as described 
above has been tested). The probability for parallelism 
is 0.824719, for collinearity is 0.334722. The parallelism 
and collinearity of the planes of the three points Gaus­
sian distribution and the uniform distributions have also 
been tested. The parallelism is 0.66730846, and the 
collinearity is 0.27099140. (the tolerance for testing 
them is the square distance less than 10e- 2 ). 

If we assume that the plane constructed from the uni­
form distribution sensing data is decided to be collinear 
to the plane defined by the above table, then, its distri­
bution is recomputed as follows: among this plane set, 
the plane instances which are not collinear with any of 
the plane instances in the given plane set, is discarded. 
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A B C P(probability) 
1.034723 -0.961805 2.386458 0.33 
1.036584 -0.966461 2.391768 0.34 
1.038042 -0.970109 2.395926 0.33 

After discarding these plane instance, the distribution 
of the new plane set is re-normalized. The resulting 
distributions of A, B, C is shown in Figure 21 

We can see that after recomputing the plane, the dis­
tributions of A, Band C are located in a more narrow 
range, further more, based on this redistributed plane 
set, the sampling points can also be recomputed and 
some of the sampling points can be discarded, or a re­
measurement of these points is performed. 

6 Conclusions 

Based on real sensing data, the probability ofthe geome­
try of the objects under consideration is computed. This 
provides us with the capability to define the probability 
distribution of the geometry based on robust computa­
tions as opposed to noisy measuring instruments. The 
relations between uncertain geometries are dependent 
on the uncertainty of geometries. Quantitative mea­
surement for the constructed CAD model can thus be 
computed, and the relation can also involve the redis­
tribution of the uncertainty of the geometry, this can 
be used as a feedback to guide the sensing and manu­
facturing modules. 
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